Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

1105 (number)

From Wikipedia, the free encyclopedia
Natural number
← 110411051106 →
Cardinalone thousand one hundred five
Ordinal1105th
(one thousand one hundred fifth)
Factorization5 × 13 × 17
Greek numeral,ΑΡΕ´
Roman numeralMCV,mcv
Binary100010100012
Ternary11112213
Senary50416
Octal21218
Duodecimal78112
Hexadecimal45116

1105 (eleven hundred [and] five, orone thousand one hundred [and] five) is thenatural number following 1104 and preceding 1106.

Mathematical properties

[edit]

1105 is the smallest positive integer that is a sum of two positive squares in exactly four different ways,[1][2] a property that can be connected (via thesum of two squares theorem) to its factorization5 × 13 × 17 as the product of the three smallestprime numbers that are congruent to 1 modulo 4.[2][3] It is also the smallest member of a cluster of threesemiprimes (1105, 1106, 1107) with eightdivisors,[4] and the second-smallestCarmichael number, after561,[5][6] one of the first four Carmichael numbers identified byR. D. Carmichael in his 1910 paper introducing this concept.[6][7]

Itsbinary representation 10001010001 and itsbase-4 representation 101101 are bothpalindromes,[8] and (because the binary representation has nonzeros only in even positions and its base-4 representation uses only the digits 0 and 1) it is a member of theMoser–de Bruijn sequence of sums of distinct powers of four.[9]

As a number of the formn(n2+1)2{\displaystyle {\tfrac {n(n^{2}+1)}{2}}} forn={\displaystyle n={}}13, 1105 is themagic constant for13 × 13magic squares,[10] and as a difference of two consecutive fourth powers(1105 = 74 − 64)[11][12] it is a rhombic dodecahedral number (a type offigurate number), and amagic number forbody-centered cubic crystals.[11][13] These properties are closely related: the difference of two consecutive fourth powers is always a magic constant for an odd magic square whose size is the sum of the two consecutive numbers (here7 + 6 = 13).[11]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A016032 (Least positive integer that is the sum of two squares of positive integers in exactly n ways)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^abTenenbaum, Gérald (1997). "1105: first steps in a mysterious quest". InGraham, Ronald L.;Nešetřil, Jaroslav (eds.).The mathematics of Paul Erdős, I. Algorithms and Combinatorics. Vol. 13. Berlin: Springer. pp. 268–275.doi:10.1007/978-3-642-60408-9_21.ISBN 978-3-642-64394-1.MR 1425191.
  3. ^Sloane, N. J. A. (ed.)."Sequence A006278 (product of the first n primes congruent to 1 (mod 4))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^Sloane, N. J. A. (ed.)."Sequence A005238 (Numbers k such that k, k+1 and k+2 have the same number of divisors)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^Sloane, N. J. A. (ed.)."Sequence A002997 (Carmichael numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^abKřížek, Michal; Luca, Florian; Somer, Lawrence (2001).17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Vol. 9. Springer-Verlag, New York. p. 136.doi:10.1007/978-0-387-21850-2.ISBN 0-387-95332-9.MR 1866957.
  7. ^Carmichael, R. D. (1910)."Note on a new number theory function".Bulletin of the American Mathematical Society.16 (5):232–238.doi:10.1090/S0002-9904-1910-01892-9.JFM 41.0226.04.
  8. ^Sloane, N. J. A. (ed.)."Sequence A097856 (Numbers that are palindromic in bases 2 and 4)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^Sloane, N. J. A. (ed.)."Sequence A000695 (Moser-de Bruijn sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^Sloane, N. J. A. (ed.)."Sequence A006003".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^abcSloane, N. J. A. (ed.)."Sequence A005917 (Rhombic dodecahedral numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^Gould, H. W. (1978). "Euler's formula forn{\displaystyle n}th differences of powers".The American Mathematical Monthly.85 (6):450–467.doi:10.1080/00029890.1978.11994613.JSTOR 2320064.MR 0480057.
  13. ^Jiang, Aiqin; Tyson, Trevor A.;Axe, Lisa (September 2005). "The structure of small Ta clusters".Journal of Physics: Condensed Matter.17 (39):6111–6121.Bibcode:2005JPCM...17.6111J.doi:10.1088/0953-8984/17/39/001.S2CID 41954369.
Retrieved from "https://en.wikipedia.org/w/index.php?title=1105_(number)&oldid=1266620018"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp