WASP-41 is aG-type main-sequence star about 533light-years away in the constellationCentaurus. Its surface temperature is 5450±150K. WASP-41 is similar to theSun in its concentration of heavy elements, with ametallicity Fe/H index of −0.080±0.090,[7] but is much younger at an age of 2.289±0.077 billion years.[9] The star exhibits strongstarspot activity, with spots covering 3% of the stellar surface.[8]
Multiplicity surveys did not detect any stellar companions as of 2017.[11]
In 2011, one planet, named WASP-41b, was discovered on a tight, circular orbit.[4] The transmission spectrum taken in 2017 was gray and featureless. No atmospheric constituents could be distinguished.[12] The planetary orbit of WASP-41b is slightly misaligned with the equatorial plane of the star, at a misalignment angle of 9.15+2.85 −2.62°.[8] The planetary equilibrium temperature is 1242±12K.[3]
Another planet, WASP-41c, was discovered in 2015.[6] The planets are too far apart to significantly affect each other's orbits.[13] The planetary equilibrium temperature of WASP-41c is 247±5K.[6]
^abcSouthworth, John; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D.; Gu, S. -H.; Herrera-Cruces, A.; Hinse, T. C.; Jorgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X. -B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; et al. (2015),High-precision photometry by telescope defocussing. III. WASP-22, WASP-41, WASP-42 and WASP-55,arXiv:1512.05549,Bibcode:2016MNRAS.457.4205S,doi:10.1093/mnras/stw279,S2CID44864064
^abMaxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Queloz, D.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J.; West, R. G.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Ségransan, D.; Smith, A. M. S.; Udry, S. (2010), "WASP-41 b: A transiting hot Jupiter planet orbiting a magnetically-active G8 V star",Publications of the Astronomical Society of the Pacific,123 (903):547–554,arXiv:1012.2977,doi:10.1086/660007,S2CID40017204
^Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; d'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Kokotanekova, R.; Kuffmeier, M.; Longa-Peña, P.; Mancini, L.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Snodgrass, C.; et al. (2018), "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016",Astronomy & Astrophysics,610: A20,arXiv:1709.07476,Bibcode:2018A&A...610A..20E,doi:10.1051/0004-6361/201731855,S2CID53400492
^Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A. (2018), "PyTranSpot- A tool for multiband light curve modeling of planetary transits and stellar spots",Astronomy & Astrophysics,610: A15,arXiv:1710.11209,Bibcode:2018A&A...610A..15J,doi:10.1051/0004-6361/201731345,S2CID55138492