Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Turn (angle)

From Wikipedia, the free encyclopedia
(Redirected fromTurn (geometry))
Unit of plane angle where a full circle equals 1
"360 degrees" and "360°" redirect here. For other uses, see360 degrees (disambiguation).

Turn
Counterclockwiserotations about the center point starting from the right, where a complete rotation corresponds to an angle of rotation of 1 turn.
General information
Unit ofPlane angle
Symboltr, pla, rev, cyc
Conversions
1 trin ...... is equal to ...
   radians   2π rad
6.283185307... rad
   milliradians   2000π mrad
6283.185307... mrad
   degrees   360°
   gradians   400g

Theturn (symboltr orpla) is a unit ofplane angle measurement that is the measure of acomplete angle—the anglesubtended by a completecircle at its center. One turn is equal to2π radians, 360 degrees or 400 gradians. As anangular unit, one turn also corresponds to onecycle (symbolcyc orc)[1] or to onerevolution (symbolrev orr).[2] Common relatedunits of frequency arecycles per second (cps) andrevolutions per minute (rpm). The angular unit of the turn is useful in connection with, among other things,electromagnetic coils (e.g.,transformers), rotating objects, and thewinding number of curves. Divisions of a turn include the half-turn and quarter-turn, spanning astraight angle and aright angle, respectively;metric prefixes can also be used as in, e.g., centiturns (ctr), milliturns (mtr), etc.

In theISQ, an arbitrary "number of turns" (also known as "number of revolutions" or "number of cycles") is formalized as adimensionless quantity calledrotation, defined as theratio of a given angle and a full turn. It is represented by the symbolN.(Seebelow for the formula.)

Because one turn is2π{\displaystyle 2\pi } radians, some have proposed representing2π{\displaystyle 2\pi } with the single letter𝜏 (tau).[3]

Unit symbols

[edit]

There are several unit symbols for the turn.

EU and Switzerland

[edit]

The German standardDIN 1315 (March 1974) proposed the unit symbol "pla" (from Latin:plenus angulus 'full angle') for turns.[4][5] Covered inDIN 1301-1 [de] (October 2010), the so-calledVollwinkel ('full angle') is not anSI unit. However, it is alegal unit of measurement in the EU[6][7] and Switzerland.[8]

Calculators

[edit]

The scientific calculatorsHP 39gII andHP Prime support the unit symbol "tr" for turns since 2011 and 2013, respectively. Support for "tr" was also added tonewRPL for theHP 50g in 2016, and for thehp 39g+,HP 49g+,HP 39gs, andHP 40gs in 2017.[9][10] An angular modeTURN was suggested for theWP 43S as well,[11] but the calculator instead implements "MULπ" (multiples ofπ) as mode and unit since 2019.[12][13]

Divisions

[edit]
See also:Angle § Units

Many angle units are defined as a division of the turn. For example, thedegree is defined such that one turn is 360 degrees.

Usingmetric prefixes, the turn can be divided in 100 centiturns or1000 milliturns, with each milliturn corresponding to anangle of 0.36°, which can also be written as21′ 36″.[14][15] Aprotractor divided in centiturns is normally called a "percentage protractor". While percentage protractors have existed since 1922,[16] the terms centiturns, milliturns and microturns were introduced much later by the British astronomerFred Hoyle in 1962.[14][15] Some measurement devices for artillery andsatellite watching carry milliturn scales.[17][18]

Binary fractions of a turn are also used. Sailors have traditionally divided a turn into 32compass points, which implicitly have an angular separation of1/32 turn. Thebinary degree, also known as thebinary radian (orbrad), is1/256 turn.[19] The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a singlebyte. Other measures of angle used in computing may be based on dividing one whole turn into2n equal parts for other values ofn.[20]

Unit conversion

[edit]
Thecircumference of theunit circle (whoseradius is one) is2π.

One turn is equal to2π{\displaystyle 2\pi } =τ{\displaystyle \tau }6.283185307179586[21]radians, 360degrees, or 400gradians.

Conversion of common angles
TurnsRadiansDegreesGradians
0 turn0 rad0g
1/72 turn𝜏/72 radπ/36 rad⁠5+5/9g
1/24 turn𝜏/24 radπ/12 rad15°⁠16+2/3g
1/16 turn𝜏/16 radπ/8 rad22.5°25g
1/12 turn𝜏/12 radπ/6 rad30°⁠33+1/3g
1/10 turn𝜏/10 radπ/5 rad36°40g
1/8 turn𝜏/8 radπ/4 rad45°50g
1/2π turn1 radc. 57.3°c. 63.7g
1/6 turn𝜏/6 radπ/3 rad60°⁠66+2/3g
1/5 turn𝜏/5 rad2π/5 rad72°80g
1/4 turn𝜏/4 radπ/2 rad90°100g
1/3 turn𝜏/3 rad2π/3 rad120°⁠133+1/3g
2/5 turn2𝜏/5 rad4π/5 rad144°160g
1/2 turn𝜏/2 radπ rad180°200g
3/4 turn3𝜏/4 rad3π/2 rad270°300g
1 turn𝜏 rad2π rad360°400g

In the ISQ/SI

[edit]

Rotation
Other names
number of revolutions, number of cycles, number of turns, number of rotations
Common symbols
N
SI unitUnitless
Dimension1

In theInternational System of Quantities (ISQ),rotation (symbolN) is aphysical quantity defined asnumber of revolutions:[22]

N is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by:

N=φ2π rad{\displaystyle N={\frac {\varphi }{2\pi {\text{ rad}}}}}

where 𝜑 denotes the measure ofrotational displacement.

The above definition is part of the ISQ, formalized in the international standardISO 80000-3 (Space and time),[22] and adopted in theInternational System of Units (SI).[23][24]

Rotation count or number of revolutions is aquantity of dimension one, resulting from a ratio of angular displacement.It can be negative and also greater than 1 in modulus.The relationship between quantity rotation,N, and unit turns, tr, can be expressed as:

N=φtr={φ}tr{\displaystyle N={\frac {\varphi }{\text{tr}}}=\{\varphi \}_{\text{tr}}}

where {𝜑}tr is the numerical value of the angle 𝜑 in units of turns (seePhysical quantity § Components).

In the ISQ/SI, rotation is used to deriverotational frequency (therate of change of rotation with respect to time), denoted byn:

n=dNdt{\displaystyle n={\frac {\mathrm {d} N}{\mathrm {d} t}}}

The SI unit of rotational frequency is thereciprocal second (s−1). Common relatedunits of frequency arehertz (Hz),cycles per second (cps), andrevolutions per minute (rpm).

Revolution
Unit ofRotation
Symbolrev, r, cyc, c
Conversions
1 revin ...... is equal to ...
   Base units   1

The superseded version ISO 80000-3:2006 defined "revolution" as a special name for thedimensionless unit "one",[a]which also received other special names, such as the radian.[b]Despite theirdimensional homogeneity, these two specially named dimensionless units are applicable for non-comparablekinds of quantity: rotation and angle, respectively.[26]"Cycle" is also mentioned in ISO 80000-3, in the definition ofperiod.[c]

See also

[edit]

Notes

[edit]
  1. ^"The special name revolution, symbol r, for this unit [name 'one', symbol '1'] is widely used in specifications on rotating machines."[25]
  2. ^"Measurement units of quantities of dimension one are numbers. In some cases, these measurement units are given special names, e.g. radian..."[25]
  3. ^"3-14) period duration, period: duration (item 3‑9) of one cycle of a periodic event"[22]

References

[edit]
  1. ^Fitzpatrick, Richard (2021).Newtonian Dynamics: An Introduction.CRC Press. p. 116.ISBN 978-1-000-50953-3. Retrieved2023-04-25.
  2. ^Units & Symbols for Electrical & Electronic Engineers(PDF). London, UK:Institution of Engineering and Technology. 2016.Archived(PDF) from the original on 2023-07-18. Retrieved2023-07-18. (1+iii+32+1 pages)
  3. ^Hartl, Michael (2010)."The Tau Manifesto". Retrieved2025-07-05.
  4. ^German, Sigmar; Drath, Peter (2013-03-13) [1979].Handbuch SI-Einheiten: Definition, Realisierung, Bewahrung und Weitergabe der SI-Einheiten, Grundlagen der Präzisionsmeßtechnik (in German) (1 ed.).Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, reprint:Springer-Verlag. p. 421.ISBN 978-3-32283606-9. 978-3-528-08441-7, 978-3-32283606-9. Retrieved2015-08-14.
  5. ^Kurzweil, Peter (2013-03-09) [1999].Das Vieweg Einheiten-Lexikon: Formeln und Begriffe aus Physik, Chemie und Technik (in German) (1 ed.). Vieweg, reprint:Springer-Verlag. p. 403.doi:10.1007/978-3-322-92920-4.ISBN 978-3-32292920-4. 978-3-322-92921-1. Retrieved2015-08-14.
  6. ^"Richtlinie 80/181/EWG - Richtlinie des Rates vom 20. Dezember 1979 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die Einheiten im Meßwesen und zur Aufhebung der Richtlinie 71/354/EWG" (in German). 1980-02-15.Archived from the original on 2019-06-22. Retrieved2019-08-06.
  7. ^"Richtlinie 2009/3/EG des Europäischen Parlaments und des Rates vom 11. März 2009 zur Änderung der Richtlinie 80/181/EWG des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die Einheiten im Messwesen (Text von Bedeutung für den EWR)" (in German). 2009-03-11.Archived from the original on 2019-08-06. Retrieved2019-08-06.
  8. ^"Art. 15 Einheiten in Form von nichtdezimalen Vielfachen oder Teilen von SI-Einheiten".Einheitenverordnung (in Swiss High German).Schweizerischer Bundesrat. 1994-11-23. 941.202.Archived from the original on 2019-05-10. Retrieved2013-01-01.
  9. ^Lapilli, Claudio Daniel (2016-05-11)."RE: newRPL: Handling of units".HP Museum.Archived from the original on 2017-08-10. Retrieved2019-08-05.
  10. ^Lapilli, Claudio Daniel (2018-10-25)."Chapter 3: Units - Available Units - Angles".newRPL User Manual.Archived from the original on 2019-08-06. Retrieved2019-08-07.
  11. ^Paul, Matthias R. (2016-01-12) [2016-01-11]."RE: WP-32S in 2016?".HP Museum.Archived from the original on 2019-08-05. Retrieved2019-08-05.[…] I'd like to see a TURN mode being implemented as well. TURN mode works exactly like DEG, RAD and GRAD (including having a full set of angle unit conversion functions like on theWP 34S), except for that a full circle doesn't equal 360 degree, 6.2831... rad or 400 gon, but 1 turn. (I […] found it to be really convenient in engineering/programming, where you often have to convert to/from other unit representations […] But I think it can also be useful for educational purposes. […]) Having the angle of a full circle normalized to 1 allows for easierconversions to/from a whole bunch of other angle units […]
  12. ^Bonin, Walter (2019) [2015].WP 43S Owner's Manual(PDF). 0.12 (draft ed.). pp. 72,118–119, 311.ISBN 978-1-72950098-9.Archived(PDF) from the original on 2023-07-18. Retrieved2019-08-05.[1][2] (314 pages)
  13. ^Bonin, Walter (2019) [2015].WP 43S Reference Manual(PDF). 0.12 (draft ed.). pp. iii, 54, 97, 128, 144, 193, 195.ISBN 978-1-72950106-1.Archived(PDF) from the original on 2023-07-18. Retrieved2019-08-05.[3][4] (271 pages)
  14. ^abHoyle, Fred (1962). Chandler, M. H. (ed.).Astronomy (1 ed.). London, UK:Macdonald & Co. (Publishers) Ltd. / Rathbone Books Limited.LCCN 62065943.OCLC 7419446. (320 pages)
  15. ^abKlein, Herbert Arthur (2012) [1988, 1974]."Chapter 8: Keeping Track of Time".The Science of Measurement: A Historical Survey (The World of Measurements: Masterpieces, Mysteries and Muddles of Metrology). Dover Books on Mathematics (corrected reprint of original ed.).Dover Publications, Inc. /Courier Corporation (originally bySimon & Schuster, Inc.). p. 102.ISBN 978-0-48614497-9.LCCN 88-25858. Retrieved2019-08-06. (736 pages)
  16. ^Croxton, Frederick E. (1922). "A Percentage Protractor - Designed for Use in the Construction of Circle Charts or "Pie Diagrams"".Journal of the American Statistical Association. Short Note.18 (137):108–109.doi:10.1080/01621459.1922.10502455.
  17. ^Schiffner, Friedrich (1965).Wähnl, Maria Emma[in German] (ed.). "Bestimmung von Satellitenbahnen".Astronomische Mitteilungen der Urania-Sternwarte Wien (in German).8. Wien, Austria:Volksbildungshaus Wiener Urania.
  18. ^Hayes, Eugene Nelson (1975) [1968].Trackers of the Skies. History of the Smithsonian Satellite-tracking Program. Cambridge, Massachusetts, USA:Academic Press / Howard A. Doyle Publishing Company.
  19. ^"ooPIC Programmer's Guide - Chapter 15: URCP".ooPIC Manual & Technical Specifications - ooPIC Compiler Ver 6.0. Savage Innovations, LLC. 2007 [1997]. Archived fromthe original on 2008-06-28. Retrieved2019-08-05.
  20. ^Hargreaves, Shawn[in Polish]."Angles, integers, and modulo arithmetic". blogs.msdn.com.Archived from the original on 2019-06-30. Retrieved2019-08-05.
  21. ^SequenceOEISA019692
  22. ^abc"ISO 80000-3:2019 Quantities and units — Part 3: Space and time" (2 ed.).International Organization for Standardization. 2019. Retrieved2019-10-23.[5] (11 pages)
  23. ^The International System of Units(PDF), V3.01 (9th ed.), International Bureau of Weights and Measures, Aug 2024,ISBN 978-92-822-2272-0
  24. ^Thompson, Ambler; Taylor, Barry N. (2020-03-04) [2009-07-02]."The NIST Guide for the Use of the International System of Units, Special Publication 811" (2008 ed.).National Institute of Standards and Technology. Retrieved2023-07-17.[6]
  25. ^ab"ISO 80000-3:2006".ISO. 2001-08-31. Retrieved2023-04-25.
  26. ^"ISO 80000-1:2009(en) Quantities and units — Part 1: General".iso.org. Retrieved2023-05-12.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Turn_(angle)&oldid=1327843631"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp