Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tolman–Oppenheimer–Volkoff equation

From Wikipedia, the free encyclopedia
Equation explaining structure of a spherical body of isotropic material
General relativity
Spacetime curvature schematic

Inastrophysics, theTolman–Oppenheimer–Volkoff (TOV)equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modeled bygeneral relativity. The equation[1] is

dPdr=Gmr2ρ(1+Pρc2)(1+4πr3Pmc2)(12Gmrc2)1{\displaystyle {\frac {dP}{dr}}=-{\frac {Gm}{r^{2}}}\rho \left(1+{\frac {P}{\rho c^{2}}}\right)\left(1+{\frac {4\pi r^{3}P}{mc^{2}}}\right)\left(1-{\frac {2Gm}{rc^{2}}}\right)^{-1}}

Here,r{\textstyle r} is a radial coordinate, andρ(r){\textstyle \rho (r)} andP(r){\textstyle P(r)} are the density and pressure, respectively, of the material at radiusr{\textstyle r}. The quantitym(r){\textstyle m(r)}, the total mass withinr{\textstyle r}, is discussed below.

The equation is derived by solving theEinstein equations for a general time-invariant, spherically symmetric metric. For a solution to the Tolman–Oppenheimer–Volkoff equation, this metric will take the form[1]

ds2=eνc2dt2(12Gmrc2)1dr2r2(dθ2+sin2θdϕ2){\displaystyle ds^{2}=e^{\nu }c^{2}\,dt^{2}-\left(1-{\frac {2Gm}{rc^{2}}}\right)^{-1}\,dr^{2}-r^{2}\left(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}\right)}

whereν(r){\textstyle \nu (r)} is determined by the constraint[1]

dνdr=(2P+ρc2)dPdr{\displaystyle {\frac {d\nu }{dr}}=-\left({\frac {2}{P+\rho c^{2}}}\right){\frac {dP}{dr}}}

When supplemented with anequation of state,F(ρ,P)=0{\textstyle F(\rho ,P)=0}, which relates density to pressure, the Tolman–Oppenheimer–Volkoff equation completely determines the structure of a spherically symmetric body of isotropic material in equilibrium. If terms of order1/c2{\textstyle 1/c^{2}} are neglected, the Tolman–Oppenheimer–Volkoff equation becomes the Newtonianhydrostatic equation, used to find the equilibrium structure of a spherically symmetric body of isotropic material when general-relativistic corrections are not important.

If the equation is used to model a bounded sphere of material in a vacuum, the zero-pressure conditionP(r)=0{\textstyle P(r)=0} and the conditioneν=12Gm/c2r{\textstyle e^{\nu }=1-2Gm/c^{2}r} should be imposed at the boundary. The second boundary condition is imposed so that the metric at the boundary is continuous with the unique static spherically symmetric solution to thevacuum field equations, theSchwarzschild metric:

ds2=(12GMrc2)c2dt2(12GMrc2)1dr2r2(dθ2+sin2θdϕ2){\displaystyle ds^{2}=\left(1-{\frac {2GM}{rc^{2}}}\right)c^{2}\,dt^{2}-\left(1-{\frac {2GM}{rc^{2}}}\right)^{-1}\,dr^{2}-r^{2}(d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2})}

Total mass

[edit]

Letm(r){\textstyle m(r)} be the total mass contained inside radiusr{\textstyle r}, as measured by the gravitational field felt by a distant observer. It satisfiesm(0)=0{\textstyle m(0)=0}.[1]

dmdr=4πr2ρ{\displaystyle {\frac {dm}{dr}}=4\pi r^{2}\rho }

Here,M{\textstyle M} is the total mass of the object, again, as measured by the gravitational field felt by a distant observer. If the boundary is atr=R{\textstyle r=R}, continuity of the metric and the definition ofm(r){\textstyle m(r)} require that

M=m(R)=0R4πr2ρdr{\displaystyle M=m(R)=\int _{0}^{R}4\pi r^{2}\rho \,dr}

Computing the mass by integrating the density of the object over its volume, on the other hand, will yield the larger value

M1=0R4πr2ρ12Gmrc2dr{\displaystyle M_{1}=\int _{0}^{R}{\frac {4\pi r^{2}\rho }{\sqrt {1-{\frac {2Gm}{rc^{2}}}}}}\,dr}

The difference between these two quantities,

ΔM=0R4πr2ρ(1112Gmrc2)dr,{\displaystyle \Delta M=\int _{0}^{R}4\pi r^{2}\rho \left(1-{\frac {1}{\sqrt {1-{\frac {2Gm}{rc^{2}}}}}}\right)\,dr,}

will be thegravitational binding energy of the object divided byc2{\textstyle c^{2}} and it is negative.

Derivation from general relativity

[edit]

Let us assume a static, spherically symmetric perfect fluid. The metric components are similar to those for theSchwarzschild metric:[2]

c2dτ2=gμνdxμdxν=eνc2dt2eλdr2r2dθ2r2sin2θdϕ2{\displaystyle c^{2}\,d\tau ^{2}=g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }=e^{\nu }c^{2}\,dt^{2}-e^{\lambda }\,dr^{2}-r^{2}\,d\theta ^{2}-r^{2}\sin ^{2}\theta \,d\phi ^{2}}

By the perfect fluid assumption, the stress-energy tensor is diagonal (in the central spherical coordinate system), with eigenvalues of energy density and pressure:

T00=ρc2{\displaystyle T_{0}^{0}=\rho c^{2}}

and

Tij=Pδij{\displaystyle T_{i}^{j}=-P\delta _{i}^{j}}

Whereρ(r){\textstyle \rho (r)} is the fluid density andP(r){\textstyle P(r)} is the fluid pressure.

To proceed further, we solve Einstein's field equations:

8πGc4Tμν=Gμν{\displaystyle {\frac {8\pi G}{c^{4}}}T_{\mu \nu }=G_{\mu \nu }}

Let us first consider theG00{\textstyle G_{00}} component:

8πGc4ρc2eν=eνr2(1ddr[reλ]){\displaystyle {\frac {8\pi G}{c^{4}}}\rho c^{2}e^{\nu }={\frac {e^{\nu }}{r^{2}}}\left(1-{\frac {d}{dr}}[re^{-\lambda }]\right)}

Integrating this expression from 0 tor{\textstyle r}, we obtain

eλ=12Gmrc2{\displaystyle e^{-\lambda }=1-{\frac {2Gm}{rc^{2}}}}

wherem(r){\textstyle m(r)} is as defined in the previous section.

Next, consider theG11{\textstyle G_{11}} component. Explicitly, we have

8πGc4Peλ=rν+eλ1r2{\displaystyle -{\frac {8\pi G}{c^{4}}}Pe^{\lambda }={\frac {-r\nu '+e^{\lambda }-1}{r^{2}}}}

which we can simplify (using our expression foreλ{\textstyle e^{\lambda }}) to

dνdr=1r(12Gmc2r)1(2Gmc2r+8πGc4r2P){\displaystyle {\frac {d\nu }{dr}}={\frac {1}{r}}\left(1-{\frac {2Gm}{c^{2}r}}\right)^{-1}\left({\frac {2Gm}{c^{2}r}}+{\frac {8\pi G}{c^{4}}}r^{2}P\right)}

We obtain a second equation by demanding continuity of the stress-energy tensor:μTνμ=0{\textstyle \nabla _{\mu }T_{\,\nu }^{\mu }=0}. Observing thattρ=tP=0{\textstyle \partial _{t}\rho =\partial _{t}P=0} (since the configuration is assumed to be static) and thatϕP=θP=0{\textstyle \partial _{\phi }P=\partial _{\theta }P=0} (since the configuration is also isotropic), we obtain in particular[3]

0=μT1μ=dPdr12(P+ρc2)dνdr{\displaystyle 0=\nabla _{\mu }T_{1}^{\mu }=-{\frac {dP}{dr}}-{\frac {1}{2}}\left(P+\rho c^{2}\right){\frac {d\nu }{dr}}\;}

Rearranging terms yields:

dPdr=(ρc2+P2)dνdr{\displaystyle {\frac {dP}{dr}}=-\left({\frac {\rho c^{2}+P}{2}}\right){\frac {d\nu }{dr}}\;}

This gives us two expressions, both containingdν/dr{\textstyle d\nu /dr}. Eliminatingdν/dr{\textstyle d\nu /dr}, we obtain:

dPdr=1r(ρc2+P2)(2Gmc2r+8πGc4r2P)(12Gmc2r)1{\displaystyle {\frac {dP}{dr}}=-{\frac {1}{r}}\left({\frac {\rho c^{2}+P}{2}}\right)\left({\frac {2Gm}{c^{2}r}}+{\frac {8\pi G}{c^{4}}}r^{2}P\right)\left(1-{\frac {2Gm}{c^{2}r}}\right)^{-1}}

Pulling out a factor ofG/r{\textstyle G/r} and rearranging factors of 2 andc2{\textstyle c^{2}} results in the Tolman–Oppenheimer–Volkoff equation:

dPdr=Gr2(ρ+Pc2)(m+4πr3Pc2)(12Gmc2r)1{\displaystyle {\frac {dP}{dr}}=-{\frac {G}{r^{2}}}\left(\rho +{\frac {P}{c^{2}}}\right)\left(m+4\pi r^{3}{\frac {P}{c^{2}}}\right)\left(1-{\frac {2Gm}{c^{2}r}}\right)^{-1}}

History

[edit]

Richard C. Tolman analyzed spherically symmetric metrics in 1934 and 1939.[4][5] The form of the equation given here was derived byJ. Robert Oppenheimer andGeorge Volkoff in their 1939 paper, "On Massive Neutron Cores".[1] In this paper, the equation of state for a degenerateFermi gas of neutrons was used to calculate an upper limit of ~0.7 solar masses for the gravitational mass of aneutron star. Since this equation of state is not realistic for a neutron star, this limiting mass is likewise incorrect. Usinggravitational wave observations from binaryneutron star mergers (likeGW170817) and the subsequent information from electromagnetic radiation (kilonova), the data suggest that the maximum mass limit is close to 2.17solar masses.[6][7][8][9][10] Earlier estimates for this limit range from 1.5 to 3.0 solar masses.[11]

Post-Newtonian approximation

[edit]

In thepost-Newtonian approximation, i.e., gravitational fields that slightly deviates fromNewtonian field, the equation can be expanded in powers of1/c2{\textstyle 1/c^{2}}. In other words, we have

dPdr=Gmr2ρ(1+Pρc2+4πr3Pmc2+2Gmrc2)+O(c4).{\displaystyle {\frac {dP}{dr}}=-{\frac {Gm}{r^{2}}}\rho \left(1+{\frac {P}{\rho c^{2}}}+{\frac {4\pi r^{3}P}{mc^{2}}}+{\frac {2Gm}{rc^{2}}}\right)+O(c^{-4}).}

See also

[edit]

References

[edit]
  1. ^abcdeOppenheimer, J. R.; Volkoff, G. M. (1939). "On Massive Neutron Cores".Physical Review.55 (4):374–381.Bibcode:1939PhRv...55..374O.doi:10.1103/PhysRev.55.374.
  2. ^Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (2017)."Coordinates and Metric for a Static, Spherical System".Gravitation. Princeton University Press. pp. 594–595.ISBN 978-0-691-17779-3.
  3. ^Tolman, R. C. (1934).Relativity Thermodynamics and Cosmology. Oxford Press. pp. 243–244.
  4. ^Tolman, R. C. (1934)."Effect of Inhomogeneity on Cosmological Models"(PDF).Proceedings of the National Academy of Sciences.20 (3):169–176.Bibcode:1934PNAS...20..169T.doi:10.1073/pnas.20.3.169.PMC 1076370.PMID 16587869.
  5. ^Tolman, R. C. (1939)."Static Solutions of Einstein's Field Equations for Spheres of Fluid"(PDF).Physical Review.55 (4):364–373.Bibcode:1939PhRv...55..364T.doi:10.1103/PhysRev.55.364.
  6. ^Margalit, B.; Metzger, B. D. (2017-12-01)."Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817".The Astrophysical Journal.850 (2): L19.arXiv:1710.05938.Bibcode:2017ApJ...850L..19M.doi:10.3847/2041-8213/aa991c.S2CID 119342447.
  7. ^Shibata, M.; Fujibayashi, S.; Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Tanaka, M. (2017-12-22). "Modeling GW170817 based on numerical relativity and its implications".Physical Review D.96 (12) 123012.arXiv:1710.07579.Bibcode:2017PhRvD..96l3012S.doi:10.1103/PhysRevD.96.123012.S2CID 119206732.
  8. ^Ruiz, M.; Shapiro, S. L.; Tsokaros, A. (2018-01-11)."GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass".Physical Review D.97 (2) 021501.arXiv:1711.00473.Bibcode:2018PhRvD..97b1501R.doi:10.1103/PhysRevD.97.021501.PMC 6036631.PMID 30003183.
  9. ^Rezzolla, L.; Most, E. R.; Weih, L. R. (2018-01-09)."Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars".Astrophysical Journal.852 (2): L25.arXiv:1711.00314.Bibcode:2018ApJ...852L..25R.doi:10.3847/2041-8213/aaa401.S2CID 119359694.
  10. ^"How massive can neutron star be?".Goethe University Frankfurt. 15 January 2018. Retrieved19 February 2018.
  11. ^Bombaci, I. (1996). "The Maximum Mass of a Neutron Star".Astronomy and Astrophysics.305:871–877.Bibcode:1996A&A...305..871B.
Special
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Spacetime
General
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Advanced
theories
Solutions
Scientists
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tolman–Oppenheimer–Volkoff_equation&oldid=1334155154"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp