Measure of how closely a shape resembles a sphere
Schematic representation of difference in grain shape. Two parameters are shown: sphericity (vertical) androunding (horizontal). Sphericity is a measure of how closely the shape of aphysical object resembles that of a perfectsphere . For example, the sphericity of theballs inside aball bearing determines thequality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of acompactness measure of a shape.
Sphericity applies inthree dimensions ; its analogue intwo dimensions , such as thecross sectional circles along acylindrical object such as ashaft , is calledroundness .
Defined by Wadell in 1935,[ 1] the sphericity,Ψ {\displaystyle \Psi } , of an object is the ratio of thesurface area of a sphere with the same volume to the object's surface area:
Ψ = π 1 3 ( 6 V p ) 2 3 A p {\displaystyle \Psi ={\frac {\pi ^{\frac {1}{3}}(6V_{p})^{\frac {2}{3}}}{A_{p}}}} whereV p {\displaystyle V_{p}} is volume of the object andA p {\displaystyle A_{p}} is the surface area. The sphericity of a sphere isunity by definition and, by theisoperimetric inequality , any shape which is not a sphere will have sphericity less than 1.
Ellipsoidal objects [ edit ] The sphericity,Ψ {\displaystyle \Psi } , of anoblate spheroid (similar to the shape of the planetEarth ) is:
Ψ = π 1 3 ( 6 V p ) 2 3 A p = 2 a b 2 3 a + b 2 a 2 − b 2 ln ( a + a 2 − b 2 b ) , {\displaystyle \Psi ={\frac {\pi ^{\frac {1}{3}}(6V_{p})^{\frac {2}{3}}}{A_{p}}}={\frac {2{\sqrt[{3}]{ab^{2}}}}{a+{\frac {b^{2}}{\sqrt {a^{2}-b^{2}}}}\ln {\left({\frac {a+{\sqrt {a^{2}-b^{2}}}}{b}}\right)}}},} wherea andb are thesemi-major andsemi-minor axes respectively.
Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the object divided by the actual surface area of the object.
First we need to write surface area of the sphere,A s {\displaystyle A_{s}} in terms of the volume of the object being measured,V p {\displaystyle V_{p}}
A s 3 = ( 4 π r 2 ) 3 = 4 3 π 3 r 6 = 4 π ( 4 2 π 2 r 6 ) = 4 π ⋅ 3 2 ( 4 2 π 2 3 2 r 6 ) = 36 π ( 4 π 3 r 3 ) 2 = 36 π V p 2 {\displaystyle A_{s}^{3}=\left(4\pi r^{2}\right)^{3}=4^{3}\pi ^{3}r^{6}=4\pi \left(4^{2}\pi ^{2}r^{6}\right)=4\pi \cdot 3^{2}\left({\frac {4^{2}\pi ^{2}}{3^{2}}}r^{6}\right)=36\pi \left({\frac {4\pi }{3}}r^{3}\right)^{2}=36\,\pi V_{p}^{2}} therefore
A s = ( 36 π V p 2 ) 1 3 = 36 1 3 π 1 3 V p 2 3 = 6 2 3 π 1 3 V p 2 3 = π 1 3 ( 6 V p ) 2 3 {\displaystyle A_{s}=\left(36\,\pi V_{p}^{2}\right)^{\frac {1}{3}}=36^{\frac {1}{3}}\pi ^{\frac {1}{3}}V_{p}^{\frac {2}{3}}=6^{\frac {2}{3}}\pi ^{\frac {1}{3}}V_{p}^{\frac {2}{3}}=\pi ^{\frac {1}{3}}\left(6V_{p}\right)^{\frac {2}{3}}} hence we defineΨ {\displaystyle \Psi } as:
Ψ = A s A p = π 1 3 ( 6 V p ) 2 3 A p {\displaystyle \Psi ={\frac {A_{s}}{A_{p}}}={\frac {\pi ^{\frac {1}{3}}\left(6V_{p}\right)^{\frac {2}{3}}}{A_{p}}}} Sphericity of common objects [ edit ] Name Picture Volume Surface area Sphericity Sphere 4 π 3 r 3 {\displaystyle {\frac {4\pi }{3}}\,r^{3}} 4 π r 2 {\displaystyle 4\pi \,r^{2}} 1 {\displaystyle 1} Disdyakis triacontahedron 900 + 720 5 11 s 3 {\displaystyle {\frac {900+720{\sqrt {5}}}{11}}\,s^{3}} 180 179 − 24 5 11 s 2 {\displaystyle {\frac {180{\sqrt {179-24{\sqrt {5}}}}}{11}}\,s^{2}} ( ( 5 + 4 5 ) 2 11 π 5 ) 1 3 179 − 24 5 ≈ 0.9857 {\displaystyle {\frac {\left(\left(5+4{\sqrt {5}}\right)^{2}{\frac {11\pi }{5}}\right)^{\frac {1}{3}}}{\sqrt {179-24{\sqrt {5}}}}}\approx 0.9857} Tricylinder 16 − 8 2 r 3 {\displaystyle 16-8{\sqrt {2}}\,r^{3}} 48 − 24 2 r 2 {\displaystyle 48-24{\sqrt {2}}\,r^{2}} 36 π + 18 π 2 3 6 ≈ 0.9633 {\displaystyle {\frac {\sqrt[{3}]{36\pi +18\pi {\sqrt {2}}}}{6}}\approx 0.9633} Rhombic triacontahedron 4 5 + 2 5 s 3 {\displaystyle 4{\sqrt {5+2{\sqrt {5}}}}\,s^{3}} 12 5 s 2 {\displaystyle 12{\sqrt {5}}\,s^{2}} 455625 π 2 + 202500 π 2 5 6 15 ≈ 0.9609 {\displaystyle {\frac {\sqrt[{6}]{455625\pi ^{2}+202500\pi ^{2}{\sqrt {5}}}}{15}}\approx 0.9609} Icosahedron 15 + 5 5 12 s 3 {\displaystyle {\frac {15+5{\sqrt {5}}}{12}}\,s^{3}} 5 3 s 2 {\displaystyle 5{\sqrt {3}}\,s^{2}} 2100 π 3 + 900 π 15 3 30 ≈ 0.9393 {\displaystyle {\frac {\sqrt[{3}]{2100\pi {\sqrt {3}}+900\pi {\sqrt {15}}}}{30}}\approx 0.9393} Bicylinder 16 3 r 3 {\displaystyle {\frac {16}{3}}\,r^{3}} 16 r 2 {\displaystyle 16\,r^{2}} 2 π 3 2 ≈ 0.9226 {\displaystyle {\frac {\sqrt[{3}]{2\pi }}{2}}\approx 0.9226} Idealbicone ( h = r 2 ) {\displaystyle (h=r{\sqrt {2}})} 2 π 3 r 2 h = 2 π 2 3 r 3 {\displaystyle {\frac {2\pi }{3}}\,r^{2}h={\frac {2\pi {\sqrt {2}}}{3}}\,r^{3}} 2 π r r 2 + h 2 = 2 π 3 r 2 {\displaystyle 2\pi \,r{\sqrt {r^{2}+h^{2}}}=2\pi {\sqrt {3}}\,r^{2}} 432 6 3 ≈ 0.9165 {\displaystyle {\frac {\sqrt[{6}]{432}}{3}}\approx 0.9165} Dodecahedron 15 + 5 4 s 3 {\displaystyle {\frac {15+{\sqrt {5}}}{4}}\,s^{3}} 3 25 + 10 5 s 2 {\displaystyle 3{\sqrt {25+10{\sqrt {5}}}}\,s^{2}} 2080 + 928 5 6 9 π 3 5 30 ≈ 0.9105 {\displaystyle {\frac {{\sqrt[{6}]{2080+928{\sqrt {5}}}}{\sqrt[{3}]{9\pi }}{\sqrt {5}}}{30}}\approx 0.9105} Rhombic dodecahedron 16 3 9 s 3 {\displaystyle {\frac {16{\sqrt {3}}}{9}}\,s^{3}} 8 2 s 2 {\displaystyle 8{\sqrt {2}}\,s^{2}} 2592 π 2 6 6 ≈ 0.9047 {\displaystyle {\frac {\sqrt[{6}]{2592\pi ^{2}}}{6}}\approx 0.9047} Idealtorus ( R = r ) {\displaystyle (R=r)} 2 π 2 R r 2 = 2 π 2 r 3 {\displaystyle 2\pi ^{2}Rr^{2}=2\pi ^{2}\,r^{3}} 4 π 2 R r = 4 π 2 r 2 {\displaystyle 4\pi ^{2}Rr=4\pi ^{2}\,r^{2}} 18 π 2 3 2 π ≈ 0.8947 {\displaystyle {\frac {\sqrt[{3}]{18\pi ^{2}}}{2\pi }}\approx 0.8947} Idealcylinder ( h = 2 r ) {\displaystyle (h=2r)} π r 2 h = 2 π r 3 {\displaystyle \pi \,r^{2}h=2\pi \,r^{3}} 2 π r ( r + h ) = 6 π r 2 {\displaystyle 2\pi \,r(r+h)=6\pi \,r^{2}} 18 3 3 ≈ 0.8736 {\displaystyle {\frac {\sqrt[{3}]{18}}{3}}\approx 0.8736} Octahedron 2 3 s 3 {\displaystyle {\frac {\sqrt {2}}{3}}\,s^{3}} 2 3 s 2 {\displaystyle 2{\sqrt {3}}\,s^{2}} 3 π 3 3 3 ≈ 0.8456 {\displaystyle {\frac {\sqrt[{3}]{3\pi {\sqrt {3}}}}{3}}\approx 0.8456} Hemisphere 2 π 3 r 3 {\displaystyle {\frac {2\pi }{3}}\,r^{3}} 3 π r 2 {\displaystyle 3\pi \,r^{2}} 2 2 3 3 ≈ 0.8399 {\displaystyle {\frac {2{\sqrt[{3}]{2}}}{3}}\approx 0.8399} Cube s 3 {\displaystyle \,s^{3}} 6 s 2 {\displaystyle 6\,s^{2}} 36 π 3 6 ≈ 0.8060 {\displaystyle {\frac {\sqrt[{3}]{36\pi }}{6}}\approx 0.8060} Idealcone ( h = 2 r 2 ) {\displaystyle (h=2r{\sqrt {2}})} π 3 r 2 h = 2 π 2 3 r 3 {\displaystyle {\frac {\pi }{3}}\,r^{2}h={\frac {2\pi {\sqrt {2}}}{3}}\,r^{3}} π r ( r + r 2 + h 2 ) = 4 π r 2 {\displaystyle \pi \,r(r+{\sqrt {r^{2}+h^{2}}})=4\pi \,r^{2}} 4 3 2 ≈ 0.7937 {\displaystyle {\frac {\sqrt[{3}]{4}}{2}}\approx 0.7937} Tetrahedron 2 12 s 3 {\displaystyle {\frac {\sqrt {2}}{12}}\,s^{3}} 3 s 2 {\displaystyle {\sqrt {3}}\,s^{2}} 12 π 3 3 6 ≈ 0.6711 {\displaystyle {\frac {\sqrt[{3}]{12\pi {\sqrt {3}}}}{6}}\approx 0.6711}
Look up
sphericity in Wiktionary, the free dictionary.