Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Sphericity

From Wikipedia, the free encyclopedia
Measure of how closely a shape resembles a sphere

For sphericity in statistics, seeMauchly's sphericity test. For the graph invariant, seeSphericity (graph theory).
Schematic representation of difference in grain shape. Two parameters are shown: sphericity (vertical) androunding (horizontal).

Sphericity is a measure of how closely the shape of aphysical object resembles that of a perfectsphere. For example, the sphericity of theballs inside aball bearing determines thequality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of acompactness measure of a shape.

Sphericity applies inthree dimensions; its analogue intwo dimensions, such as thecross sectional circles along acylindrical object such as ashaft, is calledroundness.

Definition

[edit]

Defined by Wadell in 1935,[1] the sphericity,Ψ{\displaystyle \Psi }, of an object is the ratio of thesurface area of a sphere with the same volume to the object's surface area:

Ψ=π13(6Vp)23Ap{\displaystyle \Psi ={\frac {\pi ^{\frac {1}{3}}(6V_{p})^{\frac {2}{3}}}{A_{p}}}}

whereVp{\displaystyle V_{p}} is volume of the object andAp{\displaystyle A_{p}} is the surface area. The sphericity of a sphere isunity by definition and, by theisoperimetric inequality, any shape which is not a sphere will have sphericity less than 1.

Ellipsoidal objects

[edit]
See also:Flattening
Further information:Sphericity of the Earth

The sphericity,Ψ{\displaystyle \Psi }, of anoblate spheroid (similar to the shape of the planetEarth) is:

Ψ=π13(6Vp)23Ap=2ab23a+b2a2b2ln(a+a2b2b),{\displaystyle \Psi ={\frac {\pi ^{\frac {1}{3}}(6V_{p})^{\frac {2}{3}}}{A_{p}}}={\frac {2{\sqrt[{3}]{ab^{2}}}}{a+{\frac {b^{2}}{\sqrt {a^{2}-b^{2}}}}\ln {\left({\frac {a+{\sqrt {a^{2}-b^{2}}}}{b}}\right)}}},}

wherea andb are thesemi-major andsemi-minor axes respectively.

Derivation

[edit]

Hakon Wadell defined sphericity as the surface area of a sphere of the same volume as the object divided by the actual surface area of the object.

First we need to write surface area of the sphere,As{\displaystyle A_{s}} in terms of the volume of the object being measured,Vp{\displaystyle V_{p}}

As3=(4πr2)3=43π3r6=4π(42π2r6)=4π32(42π232r6)=36π(4π3r3)2=36πVp2{\displaystyle A_{s}^{3}=\left(4\pi r^{2}\right)^{3}=4^{3}\pi ^{3}r^{6}=4\pi \left(4^{2}\pi ^{2}r^{6}\right)=4\pi \cdot 3^{2}\left({\frac {4^{2}\pi ^{2}}{3^{2}}}r^{6}\right)=36\pi \left({\frac {4\pi }{3}}r^{3}\right)^{2}=36\,\pi V_{p}^{2}}

therefore

As=(36πVp2)13=3613π13Vp23=623π13Vp23=π13(6Vp)23{\displaystyle A_{s}=\left(36\,\pi V_{p}^{2}\right)^{\frac {1}{3}}=36^{\frac {1}{3}}\pi ^{\frac {1}{3}}V_{p}^{\frac {2}{3}}=6^{\frac {2}{3}}\pi ^{\frac {1}{3}}V_{p}^{\frac {2}{3}}=\pi ^{\frac {1}{3}}\left(6V_{p}\right)^{\frac {2}{3}}}

hence we defineΨ{\displaystyle \Psi } as:

Ψ=AsAp=π13(6Vp)23Ap{\displaystyle \Psi ={\frac {A_{s}}{A_{p}}}={\frac {\pi ^{\frac {1}{3}}\left(6V_{p}\right)^{\frac {2}{3}}}{A_{p}}}}

Sphericity of common objects

[edit]
NamePictureVolumeSurface areaSphericity
Sphere4π3r3{\displaystyle {\frac {4\pi }{3}}\,r^{3}}4πr2{\displaystyle 4\pi \,r^{2}}1{\displaystyle 1}
Disdyakis triacontahedron900+720511s3{\displaystyle {\frac {900+720{\sqrt {5}}}{11}}\,s^{3}}18017924511s2{\displaystyle {\frac {180{\sqrt {179-24{\sqrt {5}}}}}{11}}\,s^{2}}((5+45)211π5)131792450.9857{\displaystyle {\frac {\left(\left(5+4{\sqrt {5}}\right)^{2}{\frac {11\pi }{5}}\right)^{\frac {1}{3}}}{\sqrt {179-24{\sqrt {5}}}}}\approx 0.9857}
Tricylinder1682r3{\displaystyle 16-8{\sqrt {2}}\,r^{3}}48242r2{\displaystyle 48-24{\sqrt {2}}\,r^{2}}36π+18π2360.9633{\displaystyle {\frac {\sqrt[{3}]{36\pi +18\pi {\sqrt {2}}}}{6}}\approx 0.9633}
Rhombic triacontahedron45+25s3{\displaystyle 4{\sqrt {5+2{\sqrt {5}}}}\,s^{3}}125s2{\displaystyle 12{\sqrt {5}}\,s^{2}}455625π2+202500π256150.9609{\displaystyle {\frac {\sqrt[{6}]{455625\pi ^{2}+202500\pi ^{2}{\sqrt {5}}}}{15}}\approx 0.9609}
Icosahedron15+5512s3{\displaystyle {\frac {15+5{\sqrt {5}}}{12}}\,s^{3}}53s2{\displaystyle 5{\sqrt {3}}\,s^{2}}2100π3+900π153300.9393{\displaystyle {\frac {\sqrt[{3}]{2100\pi {\sqrt {3}}+900\pi {\sqrt {15}}}}{30}}\approx 0.9393}
Bicylinder163r3{\displaystyle {\frac {16}{3}}\,r^{3}}16r2{\displaystyle 16\,r^{2}}2π320.9226{\displaystyle {\frac {\sqrt[{3}]{2\pi }}{2}}\approx 0.9226}
Idealbicone
(h=r2){\displaystyle (h=r{\sqrt {2}})}
2π3r2h=2π23r3{\displaystyle {\frac {2\pi }{3}}\,r^{2}h={\frac {2\pi {\sqrt {2}}}{3}}\,r^{3}}2πrr2+h2=2π3r2{\displaystyle 2\pi \,r{\sqrt {r^{2}+h^{2}}}=2\pi {\sqrt {3}}\,r^{2}}432630.9165{\displaystyle {\frac {\sqrt[{6}]{432}}{3}}\approx 0.9165}
Dodecahedron15+54s3{\displaystyle {\frac {15+{\sqrt {5}}}{4}}\,s^{3}}325+105s2{\displaystyle 3{\sqrt {25+10{\sqrt {5}}}}\,s^{2}}2080+928569π35300.9105{\displaystyle {\frac {{\sqrt[{6}]{2080+928{\sqrt {5}}}}{\sqrt[{3}]{9\pi }}{\sqrt {5}}}{30}}\approx 0.9105}
Rhombic dodecahedron1639s3{\displaystyle {\frac {16{\sqrt {3}}}{9}}\,s^{3}}82s2{\displaystyle 8{\sqrt {2}}\,s^{2}}2592π2660.9047{\displaystyle {\frac {\sqrt[{6}]{2592\pi ^{2}}}{6}}\approx 0.9047}
Idealtorus
(R=r){\displaystyle (R=r)}
2π2Rr2=2π2r3{\displaystyle 2\pi ^{2}Rr^{2}=2\pi ^{2}\,r^{3}}4π2Rr=4π2r2{\displaystyle 4\pi ^{2}Rr=4\pi ^{2}\,r^{2}}18π232π0.8947{\displaystyle {\frac {\sqrt[{3}]{18\pi ^{2}}}{2\pi }}\approx 0.8947}
Idealcylinder
(h=2r){\displaystyle (h=2r)}
πr2h=2πr3{\displaystyle \pi \,r^{2}h=2\pi \,r^{3}}2πr(r+h)=6πr2{\displaystyle 2\pi \,r(r+h)=6\pi \,r^{2}}18330.8736{\displaystyle {\frac {\sqrt[{3}]{18}}{3}}\approx 0.8736}
Octahedron23s3{\displaystyle {\frac {\sqrt {2}}{3}}\,s^{3}}23s2{\displaystyle 2{\sqrt {3}}\,s^{2}}3π3330.8456{\displaystyle {\frac {\sqrt[{3}]{3\pi {\sqrt {3}}}}{3}}\approx 0.8456}
Hemisphere2π3r3{\displaystyle {\frac {2\pi }{3}}\,r^{3}}3πr2{\displaystyle 3\pi \,r^{2}}22330.8399{\displaystyle {\frac {2{\sqrt[{3}]{2}}}{3}}\approx 0.8399}
Cubes3{\displaystyle \,s^{3}}6s2{\displaystyle 6\,s^{2}}36π360.8060{\displaystyle {\frac {\sqrt[{3}]{36\pi }}{6}}\approx 0.8060}
Idealcone
(h=2r2){\displaystyle (h=2r{\sqrt {2}})}
π3r2h=2π23r3{\displaystyle {\frac {\pi }{3}}\,r^{2}h={\frac {2\pi {\sqrt {2}}}{3}}\,r^{3}}πr(r+r2+h2)=4πr2{\displaystyle \pi \,r(r+{\sqrt {r^{2}+h^{2}}})=4\pi \,r^{2}}4320.7937{\displaystyle {\frac {\sqrt[{3}]{4}}{2}}\approx 0.7937}
Tetrahedron212s3{\displaystyle {\frac {\sqrt {2}}{12}}\,s^{3}}3s2{\displaystyle {\sqrt {3}}\,s^{2}}12π3360.6711{\displaystyle {\frac {\sqrt[{3}]{12\pi {\sqrt {3}}}}{6}}\approx 0.6711}

See also

[edit]

References

[edit]
  1. ^Wadell, Hakon (1935). "Volume, Shape, and Roundness of Quartz Particles".The Journal of Geology.43 (3):250–280.Bibcode:1935JG.....43..250W.doi:10.1086/624298.

External links

[edit]
Look upsphericity in Wiktionary, the free dictionary.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Sphericity&oldid=1326192161"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp