Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Self-similar process

From Wikipedia, the free encyclopedia

Self-similar processes arestochastic processes satisfying a mathematically precise version of theself-similarity property. Several related properties have this name, and some are defined here.

A self-similar phenomenon behaves the same when viewed at different degrees of magnification, or different scales on a dimension.Because stochastic processes arerandom variables with a time and a space component, their self-similarity properties are defined in terms of how a scaling in time relates to a scaling in space.

Distributional self-similarity

[edit]
A plot of(1/c)Wct{\displaystyle (1/{\sqrt {c}})W_{ct}} forW{\displaystyle W} a Brownian motion andc decreasing, demonstrating the self-similarity with parameterH=1/2{\displaystyle H=1/2}.

Definition

[edit]

Acontinuous-time stochastic process(Xt)t0{\displaystyle (X_{t})_{t\geq 0}} is calledself-similar with parameterH>0{\displaystyle H>0} if for alla>0{\displaystyle a>0}, the processes(Xat)t0{\displaystyle (X_{at})_{t\geq 0}} and(aHXt)t0{\displaystyle (a^{H}X_{t})_{t\geq 0}} have the samelaw.[1]

Examples

[edit]

Second-order self-similarity

[edit]

Definition

[edit]

Awide-sense stationary process(Xn)n0{\displaystyle (X_{n})_{n\geq 0}} is calledexactly second-order self-similar with parameterH>0{\displaystyle H>0} if the following hold:

(i)Var(X(m))=Var(X)m2(H1){\displaystyle \mathrm {Var} (X^{(m)})=\mathrm {Var} (X)m^{2(H-1)}}, where for eachkN0{\displaystyle k\in \mathbb {N} _{0}},Xk(m)=1mi=1mX(k1)m+i,{\displaystyle X_{k}^{(m)}={\frac {1}{m}}\sum _{i=1}^{m}X_{(k-1)m+i},}
(ii) for allmN+{\displaystyle m\in \mathbb {N} ^{+}}, theautocorrelation functionsr{\displaystyle r} andr(m){\displaystyle r^{(m)}} ofX{\displaystyle X} andX(m){\displaystyle X^{(m)}} are equal.

If instead of (ii), the weaker condition

(iii)r(m)r{\displaystyle r^{(m)}\to r} pointwise asm{\displaystyle m\to \infty }

holds, thenX{\displaystyle X} is calledasymptotically second-order self-similar.[5]

Connection to long-range dependence

[edit]

In the case1/2<H<1{\displaystyle 1/2<H<1}, asymptotic self-similarity is equivalent tolong-range dependence.[1]Self-similar and long-range dependent characteristics in computer networks present a fundamentally different set of problems to people doing analysis and/or design of networks, and many of the previous assumptions upon which systems have been built are no longer valid in the presence of self-similarity.[6]

Long-range dependence is closely connected to the theory ofheavy-tailed distributions.[7] A distribution is said to have a heavy tail if

limxeλxPr[X>x]=for all λ>0.{\displaystyle \lim _{x\to \infty }e^{\lambda x}\Pr[X>x]=\infty \quad {\mbox{for all }}\lambda >0.\,}

One example of a heavy-tailed distribution is thePareto distribution. Examples of processes that can be described using heavy-tailed distributions include traffic processes, such as packet inter-arrival times and burst lengths.[8]

Examples

[edit]

References

[edit]
  1. ^ab§1.4.1 of Park, Willinger (2000)
  2. ^Chapter 2: Lemma 9.4 ofIoannis Karatzas;Steven E. Shreve (1991),Brownian Motion and Stochastic Calculus (second ed.),Springer Verlag,doi:10.1007/978-1-4612-0949-2,ISBN 978-0-387-97655-6
  3. ^Gennady Samorodnitsky;Murad S. Taqqu (1994), "Chapter 7: "Self-similar processes"",Stable Non-Gaussian Random Processes, Chapman & Hall,ISBN 0-412-05171-0
  4. ^Theorem 3.2 ofAndreas E. Kyprianou; Juan Carlos Pardo (2022),Stable Lévy Processes via Lamperti-Type Representations, New York, NY:Cambridge University Press,doi:10.1017/9781108648318,ISBN 978-1-108-48029-1
  5. ^abWill E. Leland;Murad S. Taqqu; Walter Willinger; Daniel V. Wilson (February 1994), "On the Self-similar Nature of Ethernet Traffic (Extended Version)",IEEE/ACM Transactions on Networking,2 (1),IEEE:1–15,doi:10.1109/90.282603
  6. ^"The Self-Similarity and Long Range Dependence in Networks Web site". Cs.bu.edu. Archived fromthe original on 2019-08-22. Retrieved2012-06-25.
  7. ^§1.4.2 of Park, Willinger (2000)
  8. ^abPark, Willinger (2000)
  9. ^Kendal, Wayne S.; Jørgensen, Bent (2011-12-27)."Tweedie convergence: A mathematical basis for Taylor's power law, 1/f noise, and multifractality".Physical Review E.84 (6) 066120. American Physical Society (APS).Bibcode:2011PhRvE..84f6120K.doi:10.1103/physreve.84.066120.ISSN 1539-3755.PMID 22304168.

Sources

Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Retrieved from "https://en.wikipedia.org/w/index.php?title=Self-similar_process&oldid=1328174002"
Categories:

[8]ページ先頭

©2009-2026 Movatter.jp