Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Scope (logic)

From Wikipedia, the free encyclopedia
Range of application for a quantifier or connective in a logical formula

Inlogic, thescope of aquantifier orconnective is the shortest formula in which it occurs,[1] determining the range in theformula to which the quantifier or connective is applied.[2][3][4] The notions of afree variable and bound variable are defined in terms of whether that formula iswithin the scope of a quantifier,[2][5] and the notions of adominant connective andsubordinate connective are defined in terms of whether a connective includes anotherwithin its scope.[6][7]

Connectives

[edit]
Logical connectives
NOT¬A,A,A¯,A{\displaystyle \neg A,-A,{\overline {A}},{\sim }A}
ANDAB,AB,AB,A&B,A&&B{\displaystyle A\land B,A\cdot B,AB,A\mathop {\&} B,A\mathop {\&\&} B}
NANDA¯B,AB,AB,AB¯{\displaystyle A\mathrel {\overline {\land }} B,A\uparrow B,A\mid B,{\overline {A\cdot B}}}
ORAB,A+B,AB,AB{\displaystyle A\lor B,A+B,A\mid B,A\parallel B}
NORA¯B,AB,A+B¯{\displaystyle A\mathrel {\overline {\lor }} B,A\downarrow B,{\overline {A+B}}}
XNORAB,A¯B¯{\displaystyle A\odot B,{\overline {A\mathrel {\overline {\lor }} B}}}
equivalentAB,AB,AB{\displaystyle A\equiv B,A\Leftrightarrow B,A\leftrightharpoons B}
XORA_B,AB{\displaystyle A\mathrel {\underline {\lor }} B,A\oplus B}
└ nonequivalentAB,AB,AB{\displaystyle A\not \equiv B,A\not \Leftrightarrow B,A\nleftrightarrow B}
impliesAB,AB,AB{\displaystyle A\Rightarrow B,A\supset B,A\rightarrow B}
nonimplication (NIMPLY)AB,AB,AB{\displaystyle A\not \Rightarrow B,A\not \supset B,A\nrightarrow B}
converseAB,AB,AB{\displaystyle A\Leftarrow B,A\subset B,A\leftarrow B}
converse nonimplicationAB,AB,AB{\displaystyle A\not \Leftarrow B,A\not \subset B,A\nleftarrow B}
Related concepts
Applications
Category

The scope of a logical connective occurring within a formula is the smallestwell-formed formula that contains the connective in question.[2][6][8] The connective with the largest scope in a formula is called itsdominant connective,[9][10]main connective,[6][8][7]main operator,[2]major connective,[4] orprincipal connective;[4] a connective within the scope of another connective is said to besubordinate to it.[6]

For instance, in the formula(((PQ)¬Q)(¬¬PQ)){\displaystyle (\left(\left(P\rightarrow Q\right)\lor \lnot Q\right)\leftrightarrow \left(\lnot \lnot P\land Q\right))}, the dominant connective is ↔, and all other connectives are subordinate to it; the → is subordinate to the ∨, but not to the ∧; the first ¬ is also subordinate to the ∨, but not to the →; the second ¬ is subordinate to the ∧, but not to the ∨ or the →; and the third ¬ is subordinate to the second ¬, as well as to the ∧, but not to the ∨ or the →.[6] If anorder of precedence is adopted for the connectives, viz., with ¬ applying first, then ∧ and ∨, then →, and finally ↔, this formula may be written in the less parenthesized form(PQ)¬Q¬¬PQ{\displaystyle \left(P\rightarrow Q\right)\lor \lnot Q\leftrightarrow \lnot \lnot P\land Q}, which some may find easier to read.[6]

Quantifiers

[edit]

The scope of a quantifier is the part of a logical expression over which the quantifier exerts control.[3] It is the shortest full sentence[5] written right after the quantifier,[3][5] often in parentheses;[3] some authors[11] describe this as including the variable written right after the universal or existential quantifier. In the formulaxP, for example,P[5] (orxP)[11] is the scope of the quantifierx[5] (or).[11]

This gives rise to the following definitions:[a]

See also

[edit]

Notes

[edit]
  1. ^These definitions follow the common practice of usingGreek letters asmetalogical symbols which may stand for symbols in a formal language forpropositional orpredicate logic. In particular,ϕ{\displaystyle \phi } andψ{\displaystyle \psi } are used to stand for anyformulae whatsoever, whereasξ{\displaystyle \xi } andζ{\displaystyle \zeta } are used to stand forpropositional variables.[1]

References

[edit]
  1. ^abcdefBostock, David (1997).Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 8, 79.ISBN 978-0-19-875141-0.
  2. ^abcdCook, Roy T. (March 20, 2009).Dictionary of Philosophical Logic. Edinburgh University Press. pp. 99, 180, 254.ISBN 978-0-7486-3197-1.
  3. ^abcdRich, Elaine; Cline, Alan Kaylor.Quantifier Scope.
  4. ^abcMakridis, Odysseus (February 21, 2022).Symbolic Logic. Springer Nature. pp. 93–95.ISBN 978-3-030-67396-3.
  5. ^abcdefg"3.3.2: Quantifier Scope, Bound Variables, and Free Variables".Humanities LibreTexts. January 21, 2017. RetrievedJune 10, 2024.
  6. ^abcdefLemmon, Edward John (1998).Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. 45–48.ISBN 978-0-412-38090-7.
  7. ^abGillon, Brendan S. (March 12, 2019).Natural Language Semantics: Formation and Valuation. MIT Press. pp. 250–253.ISBN 978-0-262-03920-8.
  8. ^ab"Examples | Logic Notes - ANU".users.cecs.anu.edu.au. RetrievedJune 10, 2024.
  9. ^Suppes, Patrick; Hill, Shirley (April 30, 2012).First Course in Mathematical Logic. Courier Corporation. pp. 23–26.ISBN 978-0-486-15094-9.
  10. ^Kirk, Donna (March 22, 2023). "2.2. Compound Statements".Contemporary Mathematics. OpenStax.
  11. ^abcBell, John L.;Machover, Moshé (April 15, 2007)."Chapter 1. Beginning mathematical logic".A Course in Mathematical Logic. Elsevier Science Ltd. p. 17.ISBN 978-0-7204-2844-5.
  12. ^abUzquiano, Gabriel (2022),"Quantifiers and Quantification", in Zalta, Edward N.; Nodelman, Uri (eds.),The Stanford Encyclopedia of Philosophy (Winter 2022 ed.), Metaphysics Research Lab, Stanford University, retrievedJune 10, 2024
  13. ^Allen, Colin; Hand, Michael (2001).Logic primer (2nd ed.). Cambridge, Mass: MIT Press. p. 66.ISBN 978-0-262-51126-1.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Scope_(logic)&oldid=1250096216"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp