Inmathematics, aquadratic integral is anintegral of the form
It can be evaluated bycompleting the square in thedenominator.

Positive-discriminant case
[edit]Assume that thediscriminantq =b2 − 4ac is positive. In that case, defineu andA by
and
The quadratic integral can now be written as
Thepartial fraction decomposition
allows us to evaluate the integral:
The final result for the original integral, under the assumption thatq > 0, is
Negative-discriminant case
[edit]In case thediscriminantq =b2 − 4ac is negative, the second term in the denominator in
is positive. Then the integral becomes![{\displaystyle {\begin{aligned}{\frac {1}{c}}\int {\frac {du}{u^{2}+A^{2}}}&={\frac {1}{cA}}\int {\frac {du/A}{(u/A)^{2}+1}}\\[9pt]&={\frac {1}{cA}}\int {\frac {dw}{w^{2}+1}}\\[9pt]&={\frac {1}{cA}}\arctan(w)+\mathrm {constant} \\[9pt]&={\frac {1}{cA}}\arctan \left({\frac {u}{A}}\right)+{\text{constant}}\\[9pt]&={\frac {1}{c{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}}\arctan \left({\frac {x+{\frac {b}{2c}}}{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}\right)+{\text{constant}}\\[9pt]&={\frac {2}{\sqrt {4ac-b^{2}\,}}}\arctan \left({\frac {2cx+b}{\sqrt {4ac-b^{2}}}}\right)+{\text{constant}}.\end{aligned}}}](/image.pl?url=https%3a%2f%2fwikimedia.org%2fapi%2frest_v1%2fmedia%2fmath%2frender%2fsvg%2f0715d439a69d30944bda613d3112a8b890555207&f=jpg&w=240)
- Weisstein, Eric W. "Quadratic Integral." FromMathWorld--A Wolfram Web Resource, wherein the following is referenced:
- Gradshteyn, Izrail Solomonovich;Ryzhik, Iosif Moiseevich;Geronimus, Yuri Veniaminovich;Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel;Moll, Victor Hugo (eds.).Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.).Academic Press, Inc.ISBN 978-0-12-384933-5.LCCN 2014010276.