Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quadratic integral

From Wikipedia, the free encyclopedia

Inmathematics, aquadratic integral is anintegral of the formdxa+bx+cx2.{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}.}

It can be evaluated bycompleting the square in thedenominator.

dxa+bx+cx2=1cdx(x+b2c)2+(acb24c2).{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{c}}\int {\frac {dx}{\left(x+{\frac {b}{2c}}\right)^{\!2}+\left({\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}\right)}}.}

Positive-discriminant case

[edit]

Assume that thediscriminantq =b2 − 4ac is positive. In that case, defineu andA byu=x+b2c,{\displaystyle u=x+{\frac {b}{2c}},}andA2=acb24c2=14c2(4acb2).{\displaystyle -A^{2}={\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}={\frac {1}{4c^{2}}}(4ac-b^{2}).}

The quadratic integral can now be written asdxa+bx+cx2=1cduu2A2=1cdu(u+A)(uA).{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{c}}\int {\frac {du}{u^{2}-A^{2}}}={\frac {1}{c}}\int {\frac {du}{(u+A)(u-A)}}.}

Thepartial fraction decomposition1(u+A)(uA)=12A(1uA1u+A){\displaystyle {\frac {1}{(u+A)(u-A)}}={\frac {1}{2A}}\!\left({\frac {1}{u-A}}-{\frac {1}{u+A}}\right)}allows us to evaluate the integral:1cdu(u+A)(uA)=12Acln(uAu+A)+constant.{\displaystyle {\frac {1}{c}}\int {\frac {du}{(u+A)(u-A)}}={\frac {1}{2Ac}}\ln \left({\frac {u-A}{u+A}}\right)+{\text{constant}}.}

The final result for the original integral, under the assumption thatq > 0, isdxa+bx+cx2=1qln(2cx+bq2cx+b+q)+constant.{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{\sqrt {q}}}\ln \left({\frac {2cx+b-{\sqrt {q}}}{2cx+b+{\sqrt {q}}}}\right)+{\text{constant}}.}

Negative-discriminant case

[edit]

In case thediscriminantq =b2 − 4ac is negative, the second term in the denominator indxa+bx+cx2=1cdx(x+b2c)2+(acb24c2).{\displaystyle \int {\frac {dx}{a+bx+cx^{2}}}={\frac {1}{c}}\int {\frac {dx}{\left(x+{\frac {b}{2c}}\right)^{\!2}+\left({\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}\right)}}.}is positive. Then the integral becomes1cduu2+A2=1cAdu/A(u/A)2+1=1cAdww2+1=1cAarctan(w)+constant=1cAarctan(uA)+constant=1cacb24c2arctan(x+b2cacb24c2)+constant=24acb2arctan(2cx+b4acb2)+constant.{\displaystyle {\begin{aligned}{\frac {1}{c}}\int {\frac {du}{u^{2}+A^{2}}}&={\frac {1}{cA}}\int {\frac {du/A}{(u/A)^{2}+1}}\\[9pt]&={\frac {1}{cA}}\int {\frac {dw}{w^{2}+1}}\\[9pt]&={\frac {1}{cA}}\arctan(w)+\mathrm {constant} \\[9pt]&={\frac {1}{cA}}\arctan \left({\frac {u}{A}}\right)+{\text{constant}}\\[9pt]&={\frac {1}{c{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}}\arctan \left({\frac {x+{\frac {b}{2c}}}{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}\right)+{\text{constant}}\\[9pt]&={\frac {2}{\sqrt {4ac-b^{2}\,}}}\arctan \left({\frac {2cx+b}{\sqrt {4ac-b^{2}}}}\right)+{\text{constant}}.\end{aligned}}}

References

[edit]
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quadratic_integral&oldid=1069728369"
Category:

[8]ページ先頭

©2009-2026 Movatter.jp