Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of integrals of logarithmic functions

From Wikipedia, the free encyclopedia

The following is a list ofintegrals (antiderivative functions) oflogarithmic functions. For a complete list of integral functions, seelist of integrals.

Note:x > 0 is assumed throughout this article, and theconstant of integration is omitted for simplicity.

Integrals involving only logarithmic functions

[edit]
logaxdx=xlogaxxlna=xlna(lnx1){\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}={\frac {x}{\ln a}}(\ln x-1)}
ln(ax)dx=xln(ax)x=x(ln(ax)1){\displaystyle \int \ln(ax)\,dx=x\ln(ax)-x=x(\ln(ax)-1)}
ln(ax+b)dx=ax+ba(ln(ax+b)1){\displaystyle \int \ln(ax+b)\,dx={\frac {ax+b}{a}}(\ln(ax+b)-1)}
(lnx)2dx=x(lnx)22xlnx+2x{\displaystyle \int (\ln x)^{2}\,dx=x(\ln x)^{2}-2x\ln x+2x}
lnnxdx=(1)nxk=0nn!k!(lnx)k{\displaystyle \int {\ln ^{n}{x}\,dx}=(-1)^{n}\,x\,\sum _{k=0}^{n}{\frac {n!}{k!}}(-\ln x)^{k}}
dxlnx=ln|lnx|+lnx+k=2(lnx)kkk!{\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}}
dxlnx=li(x){\displaystyle \int {\frac {dx}{\ln x}}=\operatorname {li} (x)}, thelogarithmic integral.
dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1(for n1){\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
lnf(x)dx=xlnf(x)xf(x)f(x)dx(for differentiable f(x)>0){\displaystyle \int \ln f(x)\,dx=x\ln f(x)-\int x{\frac {f'(x)}{f(x)}}\,dx\qquad {\mbox{(for differentiable }}f(x)>0{\mbox{)}}}

Integrals involving logarithmic and power functions

[edit]
xmlnxdx=xm+1(lnxm+11(m+1)2)(for m1){\displaystyle \int x^{m}\ln x\,dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq -1{\mbox{)}}}
xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dx(for m1){\displaystyle \int x^{m}(\ln x)^{n}\,dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m\neq -1{\mbox{)}}}
(lnx)ndxx=(lnx)n+1n+1(for n1){\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}
lnxdxxm=lnx(m1)xm11(m1)2xm1(for m1){\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
(lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxm(for m1){\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1(for n1){\displaystyle \int {\frac {x^{m}\,dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
dxxlnx=ln|lnx|{\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|}
dxxlnxlnlnx=ln|ln|lnx||{\displaystyle \int {\frac {dx}{x\ln x\ln \ln x}}=\ln \left|\ln \left|\ln x\right|\right|}, etc.
dxxlnlnx=li(lnx){\displaystyle \int {\frac {dx}{x\ln \ln x}}=\operatorname {li} (\ln x)}
dxxnlnx=ln|lnx|+k=1(1)k(n1)k(lnx)kkk!{\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}}
dxx(lnx)n=1(n1)(lnx)n1(for n1){\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
ln(x2+a2)dx=xln(x2+a2)2x+2atan1xa{\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}}
xx2+a2ln(x2+a2)dx=14ln2(x2+a2){\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}

Integrals involving logarithmic and trigonometric functions

[edit]
sin(lnx)dx=x2(sin(lnx)cos(lnx)){\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}
cos(lnx)dx=x2(sin(lnx)+cos(lnx)){\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}

Integrals involving logarithmic and exponential functions

[edit]
ex(xlnxx1x)dx=ex(xlnxxlnx){\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\,dx=e^{x}(x\ln x-x-\ln x)}
1ex(1xlnx)dx=lnxex{\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\,dx={\frac {\ln x}{e^{x}}}}
ex(1lnx1x(lnx)2)dx=exlnx{\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x(\ln x)^{2}}}\right)\,dx={\frac {e^{x}}{\ln x}}}

n consecutive integrations

[edit]

Forn{\displaystyle n} consecutive integrations, the formula

lnxdx=x(lnx1)+C0{\displaystyle \int \ln x\,dx=x(\ln x-1)+C_{0}}

generalizes to

lnxdxdx=xnn!(lnxk=1n1k)+k=0n1Ckxkk!{\displaystyle \int \dotsi \int \ln x\,dx\dotsm dx={\frac {x^{n}}{n!}}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}}{k!}}} ,
whereCk{\displaystyle C_{k}} are arbitrary constants of integration.

See also

[edit]

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_logarithmic_functions&oldid=1325503754"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp