Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of argon

From Wikipedia, the free encyclopedia

Isotopes ofargon (18Ar)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
36Ar0.334%stable
37Artrace35.01 dε37Cl
38Ar0.0630%stable
39Artrace302 yβ39K
40Ar99.6%stable
41Artrace109.61 minβ41K
42Arsynth32.9 yβ42K
Standard atomic weightAr°(Ar)

Argon (18Ar) has 26 knownisotopes, from29Ar to54Ar, of which three arestable (36Ar,38Ar, and40Ar). On Earth,40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are39Ar with a half-life of 302 years,42Ar with a half-life of 32.9 years, and37Ar with a half-life of 35.01 days. All other isotopes have half-lives of less than two hours, and most less than one minute. Isotopes lighter than38Ar decay tochlorine or lighter elements, while heavier ones beta decay topotassium.

The naturally occurring40K, with ahalf-life of 1.248×109 years, decays to stable40Ar byelectron capture (10.72%) and bypositron emission (0.001%), and also to stable40Ca viabeta decay (89.28%). These properties and ratios are used to determine the age ofrocks throughpotassium–argon dating.[4]

Despite the trapping of40Ar in many rocks, it can be released by melting, grinding, and diffusion. Almost all argon in the Earth's atmosphere is the product of40K decay, since 99.6% of Earth's atmospheric argon is40Ar, whereas in the Sun and presumably in primordial star-forming clouds, argon consists of ~85%36Ar, ~15%38Ar and only trace40Ar. Similarly, the ratio of the isotopes36Ar:38Ar:40Ar in the atmospheres of theouter planets is measured to be 8400:1600:1.[5]

In the Earth'satmosphere, radioactive39Ar (and to a lesser extent37Ar) is made bycosmic ray activity, primarily from40Ar. In the subsurface environment,39Ar is also produced throughneutron capture by39K or42Ca, with proton or alpha emission respectively;37Ar was created in subsurfacenuclear explosions similarly from40Ca.[4] The content of39Ar in natural argon is measured to be of (8.6±0.4)×10−16 g/g, or (0.964±0.024) Bq/kg weight.[6]

The content of42Ar (half-life 33 years) in the Earth's atmosphere, though it had previously been reported as a cosmogenic isotope,[7] is lower than 6×10−21 of the element.[8] Many endeavors require argon depleted in thecosmogenic isotopes, known as depleted argon[9] and this may be obtained from underground sources that have been isolated from the atmosphere long enough for these isotopes to decay.

36Ar, in the form ofargon hydride, was detected in theCrab Nebulasupernova remnant during 2013.[10][11] This was the first time anoble molecule was detected inouter space.[10][11]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[12]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity[1]
[n 6][n 7]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
29Ar[13]181129.04076(47)#2p27S5/2+#
30Ar181230.02369(19)#<10 ps2p28S0+
31Ar181331.012125(14)[14]15.0(3) msβ+, p (68.3%)30S5/2+
β+ (22.63%)31Cl
β+, 2p (9.0%)29P
β+, 3p (0.07%)28Si
β+, p,α? (<0.38%)26Si
β+, α? (<0.03%)27P
2p? (<0.03%)29S
32Ar181431.9976378(19)98(2) msβ+ (64.42%)32Cl0+
β+, p (35.58%)31S
33Ar181532.98992555(43)173.0(20) msβ+ (61.3%)33Cl1/2+
β+, p (38.7%)32S
34Ar181633.980270092(83)846.46(35) msβ+34Cl0+
35Ar181734.97525772(73)1.7756(10) sβ+35Cl3/2+
36Ar181835.967545106(28)Observationally Stable[n 8]0+0.003336(210)
37Ar181936.96677630(22)35.011(19) dEC37Cl3/2+Trace[n 9]
38Ar182037.96273210(21)Stable0+0.000629(70)
39Ar[n 10]182138.9643130(54)302(10) y[15][16]β39K7/2−8×10−16[17][n 9]
40Ar[n 11]182239.9623831220(23)Stable0+0.996035(250)[n 12]
41Ar182340.96450057(37)109.61(4) minβ41K7/2−Trace[n 9]
42Ar182441.9630457(62)32.9(11) yβ42K0+
43Ar182542.9656361(57)5.37(6) minβ43K5/2(−)
44Ar182643.9649238(17)11.87(5) minβ44K0+
45Ar182744.96803973(55)21.48(15) sβ45K(5/2−,7/2−)
46Ar182845.9680392(25)8.4(6) sβ46K0+
47Ar182946.9727671(13)1.23(3) sβ (>99.8%)47K(3/2)−
β,n? (<0.2%)46K
48Ar183047.976001(18)415(15) msβ (62%)48K0+
β, n (38%)47K
49Ar183148.98169(43)#236(8) msβ49K3/2−#
β, n (29%)48K
β, 2n?47K
50Ar183249.98580(54)#106(6) msβ (63%)50K0+
β, n (37%)49K
β, 2n?48K
51Ar183350.99303(43)#30# ms
[>200 ns]
β?51K1/2−#
β, n?50K
β, 2n?49K
52Ar183451.99852(64)#40# ms
[>620 ns]
β?52K0+
β, n?51K
β, 2n?50K
53Ar183553.00729(75)#20# ms
[>620 ns]
β?53K5/2−#
β, n?52K
β, 2n?51K
54Ar183654.01348(86)#5# ms
[>400 ns]
β?54K0+
β, n?53K
β, 2n?52K
This table header & footer:
  1. ^mAr – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    EC:Electron capture



    n:Neutron emission
    p:Proton emission
  5. ^Bold symbol as daughter – Daughter product is stable.
  6. ^( ) spin value – Indicates spin with weak assignment arguments.
  7. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^Believed to undergo double electron capture to36S (lightest theoretically unstable nuclide for which no evidence of radioactivity has been observed)
  9. ^abcCosmogenic nuclide
  10. ^Used inargon–argon dating
  11. ^Used inargon–argon dating andpotassium–argon dating
  12. ^Generated from40K in rocks. These ratios are terrestrial. Cosmic abundance is far less than36Ar.

See also

[edit]

Daughter products other than argon

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Argon".CIAAW. 2017.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^ab"40Ar/39Ar dating and errors". Archived fromthe original on 9 May 2007. Retrieved7 March 2007.
  5. ^Cameron, A.G.W. (1973). "Elemental and isotopic abundances of the volatile elements in the outer planets".Space Science Reviews.14 (3–4):392–400.Bibcode:1973SSRv...14..392C.doi:10.1007/BF00214750.S2CID 119861943.
  6. ^P. Adhikari; et al. (2023)."Precision Measurement of the Specific Activity of39Ar in Atmospheric Argon with the DEAP-3600 Detector".The European Physical Journal C.83 (7): 642.arXiv:2302.14639.doi:10.1140/epjc/s10052-023-11678-6.
  7. ^For example inBarabash, A.S.; Saakyan, R.R.; Umatov, V.I. (2016). "On concentration of 42Ar in the Earth's atmosphere".Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.839:39–42.arXiv:1609.08890.doi:10.1016/j.nima.2016.09.042.
  8. ^V. D. Ashitkov; et al. (1998). "New experimental limit on the42Ar content in the Earth's atmosphere".Nuclear Instruments and Methods A.416 (1):179–181.Bibcode:1998NIMPA.416..179A.doi:10.1016/S0168-9002(98)00740-2.
  9. ^H. O. Back; et al. (2012)."Depleted Argon from Underground Sources".Physics Procedia.37:1105–1112.Bibcode:2012PhPro..37.1105B.doi:10.1016/j.phpro.2012.04.099.
  10. ^abQuenqua, Douglas (13 December 2013)."Noble Molecules Found in Space".The New York Times. Retrieved13 December 2013.
  11. ^abBarlow, M. J.; et al. (2013). "Detection of a Noble Gas Molecular Ion,36ArH+, in the Crab Nebula".Science.342 (6164):1343–1345.arXiv:1312.4843.Bibcode:2013Sci...342.1343B.doi:10.1126/science.1243582.PMID 24337290.S2CID 37578581.
  12. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  13. ^Mukha, I.; et al. (2018). "Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains".Physical Review C.98 (6) 064308: 064308–1–064308–13.arXiv:1803.10951.Bibcode:2018PhRvC..98f4308M.doi:10.1103/PhysRevC.98.064308.S2CID 119384311.
  14. ^Chen, Z. Y.; Yan, X. L.; Hou, S. Q.; Liu, J. B.; Shi, J. Y.; Zhou, X. H.; Zhang, Y. H.; Wang, M.; Zhou, X.; Zhang, M.; Li, H. F.; Sun, M. Z.; Xing, Y. M.; Shuai, P.; Xu, X.; Huang, W. J.; Wang, Q.; Song, Y. N.; Deng, H. Y.; Jiao, H. Y.; Luo, Y. F.; Litvinov, Yu. A.; Blaum, K.; Yamaguchi, T. (1 December 2025)."Precision Mass Measurement of 26 P and 27 S and Their Impact on the 26 P( p , γ ) 27 S Reaction in Stellar X-Ray Bursts".The Astrophysical Journal.994 (2): 270.doi:10.3847/1538-4357/ae1470.
  15. ^P. Adhikari; et al. (2025)."Direct Measurement of the Half-Life of39Ar from 3.4 Years of Data with the DEAP-3600 Detector".The European Physical Journal C.85 (7): 728.doi:10.1140/epjc/s10052-025-14289-5.
  16. ^This appears reliable but the NUBASE2020 value is 268(8) years and the discrepancy is yet to be explained.
  17. ^Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater".Physics Today.66 (3):74–75.Bibcode:2013PhT....66c..74L.doi:10.1063/PT.3.1926.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_argon&oldid=1338111004"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp