Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Graduated majority judgment

From Wikipedia, the free encyclopedia
Single-winner electoral system
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Graduated majority judgment" – news ·newspapers ·books ·scholar ·JSTOR
(January 2024) (Learn how and when to remove this message)
A jointPolitics andEconomics series
Social choice andelectoral systems
iconMathematics portal

Graduated majority judgment (GMJ), sometimes called theusual judgment[1] orcontinuousBucklin voting,[2] is a single-winnerrated voting rule that selects the candidate with thehighest median score.[1] It was first suggested as an improvement onmajority judgment by Andrew Jennings in 2010.[3]

GMJ begins by counting all ballots for their first choice. If no candidate has a majority then later (second, third, etc.) preferences are gradually added in, continuing until one candidate reaches 50% approval. The first candidate to reach a majority of the vote is the winner.

Highest medians

[edit]
Main article:Highest median voting rules

Votes should be cast using acardinal (rated) ballot, which ask voters to give each candidate a separate grade, such as :

AwfulBadTolerableNeutralAcceptableGoodExcellent
Candidate AX
Candidate BX
Candidate CX
Candidate DX

When counting the votes, we calculate the share of each grade for each of the votes cast. This is the candidate's "merit profile":

CandidateAwfulBadTolerableNeutralAcceptableGoodExcellent
A2%15%21%20%9%18%15%
B2%17%19%13%13%12%24%
C1%9%10%15%15%25%25%

For each candidate, we determine themedian ormajority grade as the grade where a majority of voters would oppose giving the candidate a higher grade, but a majority would also oppose giving a lower grade.[4] This rule means that the absolute majority of the electors judge that a candidates meritsat least its median grade, while half the electors judge that he deservesat most its median grade.[5]

If only one candidate has the highest median grade, they are elected (as in allhighest median voting rules). Otherwise, the election uses a tie-breaking procedure.

Tie-breaking

[edit]

Graduated majority judgment uses a simpleline-drawing method to break ties.[1] This rule is easier to explain than others such asmajority judgment, and also guaranteescontinuity.

Graphically, we can represent this by drawing a plot showingthe share of voters who assign an approval less than the given score, then draw lines connecting the points on this graph. The place where this plot intersects 50% is each candidate's final score.

Example

[edit]

Consider the same election as before, but relabeling the verbal grades as numbers on a scale from 0 to 6:

A plot showing how the overall score of a candidate can be calculated using graduated majority judgment.
Grade
Candidate
0123456
A

(Running total)

2%15%21%20%9%18%15%
2%17%39%58%68%85%100%
B

(Running total)

2%17%19%13%13%12%24%
2%19%38%51%64%76%100%
C

(Running total)

1%9%10%15%15%25%25%
1%10%20%35%50%75%100%

Candidates A and B both cross the 50% threshold between 2 or 3, so we must invoke the tiebreaking procedure. When we do, we find that the median grades for candidates A, B, and C are 3.4, 3.1, and 2.0 respectively. Thus, Candidate A is declared the winner.

Race analogy

[edit]

The tiebreaking rule can be explained using an analogy where every candidate is in a race. Each candidate takes 1 minute to run from one grade to the next, and they run at a constant speed when moving from one grade to the next. The winner is the first candidate to cross the finish line at 50% of the vote.

Mathematical formula

[edit]

Say the median grade of a candidatec{\displaystyle c} isαc{\displaystyle \alpha _{c}} (when there is a tie, we define the median as halfway between the neighboring grades). Letpc{\displaystyle p_{c}} (the share ofproponents) refer to the share of electors givingc{\displaystyle c} a score strictly better than the median grade. The share ofopponents ofc{\displaystyle c}, writtenqc{\displaystyle q_{c}}, is the share of grades falling below the median. Then the complete score for GMJ is given by the following formula:[1]nc=αc+12pcqc1pcqc{\displaystyle n_{c}=\alpha _{c}+{\frac {1}{2}}{\frac {p_{c}-q_{c}}{1-p_{c}-q_{c}}}}

Additional tie-breaking

[edit]

In the unusual case of a tie where the formula above does not determine a single winner (if several candidates have exactly the same score), ties can be broken by binning together the 3 grades closest to the median, then repeating the tie-breaking procedure.[1] In the example above, we would combine all "Good," "Fair," and "Passable" grades into a new "Passable to Good" grade, then apply the same tie-breaking formula as before. This process can be repeated multiple times (binning more and more grades) until a winner is found.

Properties and advantages

[edit]

Advantages and disadvantages common to highest-median rules

[edit]
Main article:Highest median voting rules

As an electoral system, the graduated majority judgment shares most of its advantages with otherhighest-median voting rules such asmajority judgment, including its resistance to tactical voting. It also shares most of its disadvantages (for example, it fails theparticipation criterion, and can fail themajority criterion arbitrarily badly).

Specific advantages of graduated majority judgment

[edit]

The tie-breaking formula of the graduated majority judgment presents specific advantages over the otherhighest-median voting rules.

Continuity

[edit]

The function defined by the graduated majority judgment tie-breaking formula is acontinuous function (as well as being almost-everywheredifferentiable), whereas the functions of majority judgment and typical judgment arediscontinuous.[1] In other words, a small change in the number of votes for each candidate is unlikely to change the winner of the election, because small changes in vote shares result in only small changes in the overall rating.

This property makes the graduated majority judgment a more robust voting method in the face of accusations of fraud or demands of a recount of all votes. As small differences of votes are less likely to change the outcome of the election, candidates are less likely to contest results.[1]

See also

[edit]

References

[edit]
  1. ^abcdefgFabre, Adrien (2021)."Tie‐breaking the highest median: alternatives to the majority judgment".Social Choice and Welfare.56:101–124.doi:10.1007/s00355-020-01269-9.S2CID 226196615 – via Springer Link.
  2. ^Smith, Warren D."On Balinski & Laraki's "majority judgment" median-based range-like voting scheme".RangeVoting.org. Center for Range Voting. Retrieved2024-01-02.
  3. ^Jennings, Andrew (2010).Monotonicity and Manipulability of Ordinal and Cardinal Social Choice Functions(PDF). Arizona State University. pp. 25–30.
  4. ^"Le jugement majoritaire".lechoixcommun.fr (in French). Retrieved2021-02-08.
  5. ^Leray, Marjolaine; Hogg, Carol."A little more democracy? Cartoons by Marjolaine Leray on the topic of Majority Judgment"(PDF).Le Choix commun.
Part of thepolitics andEconomics series
Single-winner
Proportional
Systems
Allocation
Quotas
Mixed
Semi-proportional
Criteria
Other
Comparison
Retrieved from "https://en.wikipedia.org/w/index.php?title=Graduated_majority_judgment&oldid=1284405572"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp