Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Geometric group theory

From Wikipedia, the free encyclopedia
Area in mathematics devoted to the study of finitely generated groups
TheCayley graph of afree group with two generators. This is ahyperbolic group whoseGromov boundary is aCantor set. Hyperbolic groups and their boundaries are important topics in geometric group theory, as are Cayley graphs.

Geometric group theory is an area inmathematics devoted to the study offinitely generated groups via exploring the connections betweenalgebraic properties of suchgroups andtopological andgeometric properties of spaces on which these groups canact non-trivially (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces).

Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying theCayley graphs of groups, which, in addition to thegraph structure, are endowed with the structure of ametric space, given by the so-calledword metric.

Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts withlow-dimensional topology,hyperbolic geometry,algebraic topology,computational group theory anddifferential geometry. There are also substantial connections withcomplexity theory,mathematical logic, the study ofLie groups and their discrete subgroups,dynamical systems,probability theory,K-theory, and other areas of mathematics.

In the introduction to his bookTopics in Geometric Group Theory,Pierre de la Harpe wrote: "One of my personal beliefs is that fascination with symmetries and groups is one way of coping with frustrations of life's limitations: we like to recognize symmetries which allow us to recognize more than what we can see. In this sense the study of geometric group theory is a part of culture, and reminds me of several things thatGeorges de Rham practiced on many occasions, such as teaching mathematics, recitingMallarmé, or greeting a friend".[1]: 3 

History

[edit]

Geometric group theory grew out ofcombinatorial group theory that largely studied properties ofdiscrete groups via analyzinggroup presentations, which describe groups asquotients offree groups; this field was first systematically studied byWalther von Dyck, student ofFelix Klein, in the early 1880s,[2] while an early form is found in the 1856icosian calculus ofWilliam Rowan Hamilton, where he studied theicosahedral symmetry group via the edge graph of thedodecahedron. Currently combinatorial group theory as an area is largely subsumed by geometric group theory. Moreover, the term "geometric group theory" came to often include studying discrete groups using probabilistic,measure-theoretic, arithmetic, analytic and other approaches that lie outside of the traditional combinatorial group theory arsenal.

In the first half of the 20th century, pioneering work ofMax Dehn,Jakob Nielsen,Kurt Reidemeister andOtto Schreier,J. H. C. Whitehead,Egbert van Kampen, amongst others, introduced some topological and geometric ideas into the study of discrete groups.[3] Other precursors of geometric group theory includesmall cancellation theory andBass–Serre theory. Small cancellation theory was introduced byMartin Grindlinger in the 1960s[4][5] and further developed byRoger Lyndon andPaul Schupp.[6] It studiesvan Kampen diagrams, corresponding to finite group presentations, via combinatorial curvature conditions and derives algebraic and algorithmic properties of groups from such analysis. Bass–Serre theory, introduced in the 1977 book of Serre,[7] derives structural algebraic information about groups by studying group actions onsimplicial trees.External precursors of geometric group theory include the study of lattices in Lie groups, especiallyMostow's rigidity theorem, the study ofKleinian groups, and the progress achieved inlow-dimensional topology and hyperbolic geometry in the 1970s and early 1980s, spurred, in particular, byWilliam Thurston'sGeometrization program.

The emergence of geometric group theory as a distinct area of mathematics is usually traced to the late 1980s and early 1990s. It was spurred by the 1987 monograph ofMikhail Gromov"Hyperbolic groups"[8] that introduced the notion of ahyperbolic group (also known asword-hyperbolic orGromov-hyperbolic ornegatively curved group), which captures the idea of a finitely generated group having large-scale negative curvature, and by his subsequent monographAsymptotic Invariants of Infinite Groups,[9] that outlined Gromov's program of understanding discrete groups up toquasi-isometry. The work of Gromov had a transformative effect on the study of discrete groups[10][11][12] and the phrase "geometric group theory" started appearing soon afterwards. (see e.g.[13]).

Modern themes and developments

[edit]
This sectionis inlist format but may read better asprose. You can help byconverting this section, if appropriate.Editing help is available.(January 2012)

Notable themes and developments in geometric group theory in 1990s and 2000s include:

  • Gromov's program to study quasi-isometric properties of groups.
A particularly influential broad theme in the area isGromov's program[14] of classifyingfinitely generated groups according to their large scale geometry. Formally, this means classifying finitely generated groups with theirword metric up toquasi-isometry. This program involves:
  1. The study of properties that are invariant underquasi-isometry. Examples of such properties of finitely generated groups include: thegrowth rate of a finitely generated group; theisoperimetric function orDehn function of afinitely presented group; the number ofends of a group;hyperbolicity of a group; thehomeomorphism type of theGromov boundary of a hyperbolic group;[15]asymptotic cones of finitely generated groups (see e.g.[16][17]);amenability of a finitely generated group; being virtuallyabelian (that is, having an abelian subgroup of finiteindex); being virtuallynilpotent; being virtuallyfree; beingfinitely presentable; being a finitely presentable group with solvableWord Problem; and others.
  2. Theorems which use quasi-isometry invariants to prove algebraic results about groups, for example:Gromov's polynomial growth theorem;Stallings' ends theorem;Mostow rigidity theorem.
  3. Quasi-isometric rigidity theorems, in which one classifies algebraically all groups that are quasi-isometric to some given group or metric space. This direction was initiated by the work ofSchwartz on quasi-isometric rigidity of rank-one lattices[18] and the work ofBenson Farb and Lee Mosher on quasi-isometric rigidity ofBaumslag–Solitar groups.[19]

Examples

[edit]

The following examples are often studied in geometric group theory:

See also

[edit]

References

[edit]
  1. ^P. de la Harpe,Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.ISBN 0-226-31719-6,ISBN 0-226-31721-8.
  2. ^Stillwell, John (2002),Mathematics and its history, Springer, p. 374,ISBN 978-0-387-95336-6
  3. ^Bruce Chandler andWilhelm Magnus.The history of combinatorial group theory. A case study in the history of ideas. Studies in the History of Mathematics and Physical Sciences, vo. 9. Springer-Verlag, New York, 1982.
  4. ^Greendlinger, Martin (1960). "Dehn's algorithm for the word problem".Communications on Pure and Applied Mathematics.13 (1):67–83.doi:10.1002/cpa.3160130108.
  5. ^Greendlinger, Martin (1961). "An analogue of a theorem of Magnus".Archiv der Mathematik.12 (1):94–96.doi:10.1007/BF01650530.S2CID 120083990.
  6. ^Roger Lyndon andPaul Schupp,Combinatorial Group Theory, Springer-Verlag, Berlin, 1977. Reprinted in the "Classics in mathematics" series, 2000.
  7. ^J.-P. Serre,Trees. Translated from the 1977 French original byJohn Stillwell. Springer-Verlag, Berlin-New York, 1980.ISBN 3-540-10103-9.
  8. ^abMikhail Gromov,Hyperbolic Groups, in "Essays in Group Theory" (Steve M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263.
  9. ^Mikhail Gromov,"Asymptotic invariants of infinite groups", in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
  10. ^Iliya Kapovich and Nadia Benakli.Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002. From the Introduction:" In the last fifteen years geometric group theory has enjoyed fast growth and rapidly increasing influence. Much of this progress has been spurred by remarkable work of M. L. Gromov [in Essays in group theory, 75–263, Springer, New York, 1987; in Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, Cambridge Univ. Press, Cambridge, 1993], who has advanced the theory of word-hyperbolic groups (also referred to as Gromov-hyperbolic or negatively curved groups)."
  11. ^Brian Bowditch,Hyperbolic 3-manifolds and the geometry of the curve complex.European Congress of Mathematics, pp. 103–115, Eur. Math. Soc., Zürich, 2005. From the Introduction:" Much of this can be viewed in the context of geometric group theory. This subject has seen very rapid growth over the last twenty years or so, though of course, its antecedents can be traced back much earlier. [...] The work of Gromov has been a major driving force in this. Particularly relevant here is his seminal paper on hyperbolic groups [Gr]."
  12. ^Elek, Gabor (2006)."The mathematics of Misha Gromov".Acta Mathematica Hungarica.113 (3):171–185.doi:10.1007/s10474-006-0098-5.S2CID 120667382.p. 181 "Gromov's pioneering work on the geometry of discrete metric spaces and his quasi-isometry program became the locomotive of geometric group theory from the early eighties."
  13. ^Geometric group theory. Vol. 1. Proceedings of the symposium held at Sussex University, Sussex, July 1991. Edited by Graham A. Niblo and Martin A. Roller. London Mathematical Society Lecture Note Series, 181. Cambridge University Press, Cambridge, 1993.ISBN 0-521-43529-3.
  14. ^Mikhail Gromov,Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
  15. ^Iliya Kapovich and Nadia Benakli.Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002.
  16. ^Riley, Tim R. (2003)."Higher connectedness of asymptotic cones".Topology.42 (6):1289–1352.doi:10.1016/S0040-9383(03)00002-8.
  17. ^Kramer, Linus;Shelah, Saharon;Tent, Katrin; Thomas, Simon (2005)."Asymptotic cones of finitely presented groups".Advances in Mathematics.193 (1):142–173.arXiv:math/0306420.doi:10.1016/j.aim.2004.04.012.S2CID 4769970.
  18. ^Schwartz, R.E. (1995)."The quasi-isometry classification of rank one lattices".Publications Mathématiques de l'Institut des Hautes Études Scientifiques.82 (1):133–168.doi:10.1007/BF02698639.S2CID 67824718.
  19. ^Farb, Benson; Mosher, Lee (1998). "A rigidity theorem for the solvable Baumslag–Solitar groups. With an appendix by Daryl Cooper".Inventiones Mathematicae.131 (2):419–451.doi:10.1007/s002220050210.MR 1608595.S2CID 121180189.
  20. ^Sela, Zlil (1995). "The isomorphism problem for hyperbolic groups. I".Annals of Mathematics. (2).141 (2):217–283.doi:10.2307/2118520.JSTOR 2118520.MR 1324134.
  21. ^Farb, Benson (1998). "Relatively hyperbolic groups".Geometric and Functional Analysis.8 (5):810–840.doi:10.1007/s000390050075.MR 1650094.S2CID 123370926.
  22. ^Bowditch, Brian H. (1999).Treelike Structures Arising from Continua and Convergence Groups. Memoirs American Mathematical Society. Vol. 662. American Mathematical Society.ISBN 978-0-8218-1003-3.
  23. ^Zlil Sela,Diophantine geometry over groups and the elementary theory of free and hyperbolic groups. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 87–92, Higher Ed. Press, Beijing, 2002.
  24. ^Kharlampovich, Olga; Myasnikov, Alexei (1998)."Tarski's problem about the elementary theory of free groups has a positive solution".Electronic Research Announcements of the American Mathematical Society.4 (14):101–8.doi:10.1090/S1079-6762-98-00047-X.MR 1662319.
  25. ^D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston.Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA, 1992.
  26. ^Sapir, Mark; Birget, Jean-Camille;Rips, Eliyahu (2002). "Isoperimetric and isodiametric functions of groups".Annals of Mathematics. (2).156 (2):345–466.arXiv:math/9811105.doi:10.2307/3597195.JSTOR 3597195.S2CID 119728458.
  27. ^Birget, Jean-Camille; Olʹshanskiĭ, Aleksandr Yu.;Rips, Eliyahu;Sapir, Mark (2002). "Isoperimetric functions of groups and computational complexity of the word problem".Annals of Mathematics. (2).156 (2):467–518.arXiv:math/9811106.doi:10.2307/3597196.JSTOR 3597196.S2CID 14155715.
  28. ^Bridson, M.R. (1999)."Fractional isoperimetric inequalities and subgroup distortion".Journal of the American Mathematical Society.12 (4):1103–18.doi:10.1090/S0894-0347-99-00308-2.MR 1678924.S2CID 7981000.
  29. ^Kropholler, P. H. (1990)."An Analogue of the Torus Decomposition Theorem for Certain Poincaré Duality Groups".Proceedings of the London Mathematical Society. s3-60 (3):503–529.doi:10.1112/plms/s3-60.3.503.ISSN 1460-244X.
  30. ^Rips, E.; Sela, Z. (1997). "Cyclic splittings of finitely presented groups and the canonical JSJ decomposition".Annals of Mathematics. Second Series.146 (1):53–109.doi:10.2307/2951832.JSTOR 2951832.
  31. ^Dunwoody, M.J.; Sageev, M.E. (1999). "JSJ-splittings for finitely presented groups over slender groups".Inventiones Mathematicae.135 (1):25–44.Bibcode:1999InMat.135...25D.doi:10.1007/s002220050278.S2CID 16958457.
  32. ^Scott, P.; Swarup, G.A. (2002)."Regular neighbourhoods and canonical decompositions for groups".Electronic Research Announcements of the American Mathematical Society.8 (3):20–28.doi:10.1090/S1079-6762-02-00102-6.MR 1928498.
  33. ^Bowditch, B.H. (1998)."Cut points and canonical splittings of hyperbolic groups".Acta Mathematica.180 (2):145–186.doi:10.1007/BF02392898.
  34. ^Fujiwara, K.; Papasoglu, P. (2006). "JSJ-decompositions of finitely presented groups and complexes of groups".Geometric and Functional Analysis.16 (1):70–125.arXiv:math/0507424.doi:10.1007/s00039-006-0550-2.S2CID 10105697.
  35. ^Yu, G. (1998). "The Novikov conjecture for groups with finite asymptotic dimension".Annals of Mathematics. Second Series.147 (2):325–355.doi:10.2307/121011.JSTOR 121011.
  36. ^G. Yu.The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Inventiones Mathematicae, vol 139 (2000), no. 1, pp. 201–240.
  37. ^Mineyev, I.; Yu, G. (2002). "The Baum–Connes conjecture for hyperbolic groups".Inventiones Mathematicae.149 (1):97–122.arXiv:math/0105086.Bibcode:2002InMat.149...97M.doi:10.1007/s002220200214.S2CID 7940721.
  38. ^Bonk, Mario; Kleiner, Bruce (2005)."Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary".Geometry & Topology.9:219–246.arXiv:math/0208135.doi:10.2140/gt.2005.9.219.S2CID 786904.
  39. ^Marc Bourdon and Hervé Pajot.Quasi-conformal geometry and hyperbolic geometry. Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17, Springer, Berlin, 2002.
  40. ^Mario Bonk,Quasiconformal geometry of fractals.International Congress of Mathematicians. Vol. II, pp. 1349–1373, Eur. Math. Soc., Zürich, 2006.
  41. ^Cannon, James W.;Floyd, William J.; Parry, Walter R. (2001)."Finite subdivision rules".Conformal Geometry and Dynamics.5 (8):153–196.Bibcode:2001CGDAM...5..153C.doi:10.1090/S1088-4173-01-00055-8.MR 1875951.
  42. ^P. Tukia.Generalizations of Fuchsian and Kleinian groups. First European Congress of Mathematics, Vol. II (Paris, 1992), pp. 447–461, Progr. Math., 120, Birkhäuser, Basel, 1994.
  43. ^Yaman, Asli (2004). "A topological characterisation of relatively hyperbolic groups".Journal für die Reine und Angewandte Mathematik.566:41–89.MR 2039323.
  44. ^Bestvina, M.; Feighn, M. (1995). "Stable actions of groups on real trees".Inventiones Mathematicae.121 (2):287–321.Bibcode:1995InMat.121..287B.doi:10.1007/BF01884300.S2CID 122048815.
  45. ^abBridson & Haefliger 1999
  46. ^M. Kapovich,Hyperbolic manifolds and discrete groups. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001.
  47. ^M. Gromov.Random walk in random groups. Geometric and Functional Analysis, vol. 13 (2003), no. 1, pp. 73–146.
  48. ^Kapovich, I.; Miasnikov, A.; Schupp, P.; Shpilrain, V. (2003)."Generic-case complexity, decision problems in group theory, and random walks".Journal of Algebra.264 (2):665–694.arXiv:math/0203239.doi:10.1016/S0021-8693(03)00167-4.
  49. ^Kapovich, I.; Schupp, P.; Shpilrain, V. (2006)."Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups".Pacific Journal of Mathematics.223 (1):113–140.arXiv:math/0303386.doi:10.2140/pjm.2006.223.113.
  50. ^L. Bartholdi, R. I. Grigorchuk and Z. Sunik.Branch groups. Handbook of algebra, Vol. 3, pp. 989-1112, North-Holland, Amsterdam, 2003.
  51. ^V. Nekrashevych.Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005.ISBN 0-8218-3831-8.
  52. ^Furman, A. (1999). "Gromov's measure equivalence and rigidity of higher rank lattices".Annals of Mathematics. Second Series.150 (3):1059–81.arXiv:math/9911262.Bibcode:1999math.....11262F.doi:10.2307/121062.JSTOR 121062.S2CID 15408706.
  53. ^Monod, N.; Shalom, Y. (2006)."Orbit equivalence rigidity and bounded cohomology".Annals of Mathematics. Second Series.164 (3):825–878.doi:10.4007/annals.2006.164.825.JSTOR 20160009.
  54. ^Y. Shalom.The algebraization of Kazhdan's property (T). International Congress of Mathematicians. Vol. II, pp. 1283–1310, Eur. Math. Soc., Zürich, 2006.
  55. ^Culler, M.;Vogtmann, K. (1986). "Moduli of graphs and automorphisms of free groups".Inventiones Mathematicae.84 (1):91–119.Bibcode:1986InMat..84...91C.doi:10.1007/BF01388734.S2CID 122869546.
  56. ^Bestvina, Mladen; Handel, Michael (1992). "Train tracks and automorphisms of free groups".Annals of Mathematics. 2.135 (1):1–51.doi:10.2307/2946562.JSTOR 2946562.MR 1147956.
  57. ^Dunwoody, M.J. (1985). "The accessibility of finitely presented groups".Inventiones Mathematicae.81 (3):449–457.Bibcode:1985InMat..81..449D.doi:10.1007/BF01388581.S2CID 120065939.
  58. ^Bestvina, M.; Feighn, M. (1991). "Bounding the complexity of simplicial group actions on trees".Inventiones Mathematicae.103 (3):449–469.Bibcode:1991InMat.103..449B.doi:10.1007/BF01239522.S2CID 121136037.
  59. ^Sela, Zlil (1997). "Acylindrical accessibility for groups".Inventiones Mathematicae.129 (3):527–565.Bibcode:1997InMat.129..527S.doi:10.1007/s002220050172.S2CID 122548154.
  60. ^Hyman Bass andAlexander Lubotzky.Tree lattices. With appendices by Hyman Bass, Lisa Carbone, Alexander Lubotzky, G. Rosenberg andJacques Tits. Progress in Mathematics, 176. Birkhäuser Boston, Inc., Boston, MA, 2001.ISBN 0-8176-4120-3.
  61. ^Kaimanovich, V.A. (2000). "The Poisson formula for groups with hyperbolic properties".Annals of Mathematics. 2.152 (3):659–692.arXiv:math/9802132.doi:10.2307/2661351.JSTOR 2661351.S2CID 14774503.
  62. ^Alexander Lubotzky and Dan Segal.Subgroup growth. Progress in Mathematics, 212.Birkhäuser Verlag, Basel, 2003.ISBN 3-7643-6989-2.MR 1978431
  63. ^Bestvina, Mladen; Kapovich, Michael; Kleiner, Bruce (2002). "Van Kampen's embedding obstruction for discrete groups".Inventiones Mathematicae.150 (2):219–235.arXiv:math/0010141.Bibcode:2002InMat.150..219B.doi:10.1007/s00222-002-0246-7.MR 1933584.S2CID 7153145.
  64. ^Ivanov, S.V. (1994). "The free Burnside groups of sufficiently large exponents".International Journal of Algebra and Computation.4 (1n2):1–309.doi:10.1142/S0218196794000026.
  65. ^Lysënok, I.G. (1996). "Infinite Burnside groups of even exponent".Izvestiya: Mathematics.60 (3):453–654.Bibcode:1996IzMat..60..453L.doi:10.1070/im1996v060n03abeh000077.S2CID 250838960.

Books and monographs

[edit]

These texts cover geometric group theory and related topics.

  • Clay, Matt; Margalit, Dan (2017).Office Hours with a Geometric Group Theorist. Princeton University Press.ISBN 978-0-691-15866-2.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Geometric_group_theory&oldid=1297174503"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp