Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Forward rate

From Wikipedia, the free encyclopedia
Future yield on a bond
Not to be confused withforward price orforward exchange rate.

Theforward rate is the future yield on abond. It is calculated using theyield curve. For example, the yield on a three-monthTreasury bill six months from now is aforward rate.[1]

Forward rate calculation

[edit]

To extractthe forward rate, we need thezero-couponyield curve.

We are trying to find thefuture interest rater1,2{\displaystyle r_{1,2}} for time period(t1,t2){\displaystyle (t_{1},t_{2})},t1{\displaystyle t_{1}} andt2{\displaystyle t_{2}} expressed inyears, given the rater1{\displaystyle r_{1}} for time period(0,t1){\displaystyle (0,t_{1})} and rater2{\displaystyle r_{2}} for time period(0,t2){\displaystyle (0,t_{2})}. To do this, we use the property, following from thearbitrage-free pricing of bonds, that the proceeds from investing at rater1{\displaystyle r_{1}} for time period(0,t1){\displaystyle (0,t_{1})} and thenreinvesting those proceeds at rater1,2{\displaystyle r_{1,2}} for time period(t1,t2){\displaystyle (t_{1},t_{2})} is equal to the proceeds from investing at rater2{\displaystyle r_{2}} for time period(0,t2){\displaystyle (0,t_{2})}.

r1,2{\displaystyle r_{1,2}} depends on the rate calculation mode (simple,yearly compounded orcontinuously compounded), which yields three different results.

Mathematically it reads as follows:

Simple rate

[edit]
(1+r1t1)(1+r1,2(t2t1))=1+r2t2{\displaystyle (1+r_{1}t_{1})(1+r_{1,2}(t_{2}-t_{1}))=1+r_{2}t_{2}}

Solving forr1,2{\displaystyle r_{1,2}} yields:

Thusr1,2=1t2t1(1+r2t21+r1t11){\displaystyle r_{1,2}={\frac {1}{t_{2}-t_{1}}}\left({\frac {1+r_{2}t_{2}}{1+r_{1}t_{1}}}-1\right)}

The discount factor formula for period (0, t)Δt{\displaystyle \Delta _{t}} expressed in years, and ratert{\displaystyle r_{t}} for this period beingDF(0,t)=1(1+rtΔt){\displaystyle DF(0,t)={\frac {1}{(1+r_{t}\,\Delta _{t})}}},the forward rate can be expressed in terms of discount factors:r1,2=1t2t1(DF(0,t1)DF(0,t2)1){\displaystyle r_{1,2}={\frac {1}{t_{2}-t_{1}}}\left({\frac {DF(0,t_{1})}{DF(0,t_{2})}}-1\right)}

Yearly compounded rate

[edit]
(1+r1)t1(1+r1,2)t2t1=(1+r2)t2{\displaystyle (1+r_{1})^{t_{1}}(1+r_{1,2})^{t_{2}-t_{1}}=(1+r_{2})^{t_{2}}}

Solving forr1,2{\displaystyle r_{1,2}} yields :

r1,2=((1+r2)t2(1+r1)t1)1/(t2t1)1{\displaystyle r_{1,2}=\left({\frac {(1+r_{2})^{t_{2}}}{(1+r_{1})^{t_{1}}}}\right)^{1/(t_{2}-t_{1})}-1}

The discount factor formula for period (0,t)Δt{\displaystyle \Delta _{t}} expressed in years, and ratert{\displaystyle r_{t}} for this period beingDF(0,t)=1(1+rt)Δt{\displaystyle DF(0,t)={\frac {1}{(1+r_{t})^{\Delta _{t}}}}}, the forward rate can be expressed in terms of discount factors:

r1,2=(DF(0,t1)DF(0,t2))1/(t2t1)1{\displaystyle r_{1,2}=\left({\frac {DF(0,t_{1})}{DF(0,t_{2})}}\right)^{1/(t_{2}-t_{1})}-1}

Continuously compounded rate

[edit]
er2t2=er1t1 er1,2(t2t1){\displaystyle e^{r_{2}\cdot t_{2}}=e^{r_{1}\cdot t_{1}}\cdot \ e^{r_{1,2}\cdot \left(t_{2}-t_{1}\right)}}


Solving forr1,2{\displaystyle r_{1,2}} yields:


STEP 1→er2t2=er1t1+r1,2(t2t1){\displaystyle e^{r_{2}\cdot t_{2}}=e^{r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}}
STEP 2→ln(er2t2)=ln(er1t1+r1,2(t2t1)){\displaystyle \ln \left(e^{r_{2}\cdot t_{2}}\right)=\ln \left(e^{r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}\right)}
STEP 3→r2t2=r1t1+r1,2(t2t1){\displaystyle r_{2}\cdot t_{2}=r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}
STEP 4→r1,2(t2t1)=r2t2r1t1{\displaystyle r_{1,2}\cdot \left(t_{2}-t_{1}\right)=r_{2}\cdot t_{2}-r_{1}\cdot t_{1}}
STEP 5→r1,2=r2t2r1t1t2t1{\displaystyle r_{1,2}={\frac {r_{2}\cdot t_{2}-r_{1}\cdot t_{1}}{t_{2}-t_{1}}}}

The discount factor formula for period (0,t)Δt{\displaystyle \Delta _{t}} expressed in years, and ratert{\displaystyle r_{t}} for this period beingDF(0,t)=ertΔt{\displaystyle DF(0,t)=e^{-r_{t}\,\Delta _{t}}},the forward rate can be expressed in terms of discount factors:

r1,2=ln(DF(0,t1))ln(DF(0,t2))t2t1=ln(DF(0,t2)DF(0,t1))t2t1{\displaystyle r_{1,2}={\frac {\ln \left(DF\left(0,t_{1}\right)\right)-\ln \left(DF\left(0,t_{2}\right)\right)}{t_{2}-t_{1}}}={\frac {-\ln \left({\frac {DF\left(0,t_{2}\right)}{DF\left(0,t_{1}\right)}}\right)}{t_{2}-t_{1}}}}

r1,2{\displaystyle r_{1,2}} is the forward rate between timet1{\displaystyle t_{1}} and timet2{\displaystyle t_{2}},

rk{\displaystyle r_{k}} is the zero-coupon yield for the time period(0,tk){\displaystyle (0,t_{k})}, (k = 1,2).

Related instruments

[edit]

See also

[edit]

References

[edit]
  1. ^Fabozzi, Vamsi.K (2012),The Handbook of Fixed Income Securities (Seventh ed.), New York: kvrv, p. 148,ISBN 978-0-07-144099-8.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Forward_rate&oldid=1315684272"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp