Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Flunoxaprofen

From Wikipedia, the free encyclopedia
Chemical compound
Pharmaceutical compound
Flunoxaprofen
Clinical data
ATC code
Identifiers
  • (2S)-2-[2-(4-fluorophenyl)-1,3-benzoxazol-5-yl]propanoic acid
CAS Number
PubChemCID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard(EPA)
Chemical and physical data
FormulaC16H12FNO3
Molar mass285.274 g·mol−1
3D model (JSmol)
  • C[C@@H](c1ccc2c(c1)nc(o2)c3ccc(cc3)F)C(=O)O
  • InChI=1S/C16H12FNO3/c1-9(16(19)20)11-4-7-14-13(8-11)18-15(21-14)10-2-5-12(17)6-3-10/h2-9H,1H3,(H,19,20)/t9-/m0/s1 ☒N
  • Key:ARPYQKTVRGFPIS-VIFPVBQESA-N ☒N
 ☒NcheckY (what is this?)  (verify)

Flunoxaprofen, also known as Priaxim, is achiralnonsteroidal anti-inflammatory drug (NSAID). It is closely related tonaproxen, which is also an NSAID. Flunoxaprofen has been shown to significantly improve the symptoms ofosteoarthritis andrheumatoid arthritis. The clinical use of flunoxaprofen has ceased due to concerns of potentialhepatotoxicity.

Structure

[edit]

Flunoxaprofen is a two-ringheterocyclic compound derived frombenzoxazole. It also contains afluorine atom and apropanoyl group.

Synthesis

[edit]

The overall synthesis is similar to that forbenoxaprofen; in this case, para-fluorobenzoyl chloride is used when forming the benzoxazole ring..

ASandmeyer reaction bydiazotisation of 2-(4-aminophenyl)propanenitrile (1) followed by acid hydrolysis leads to the phenol (2), which is nitrated and reduced usingstannous chloride orcatalytic hydrogenation to give the aminophenol (4). Hydrolysis of the nitrile produces thecarboxylic acid (5), which is converted toracemic flunoxaprofen byacylation withp-fluorobenzoyl chloride, followed bycyclisation.[1][2][3][4]

Preparations

[edit]

Because flunoxaprofen has limited water-solubility, additional steps must be taken in order to prepare syrups, creams, suppositories, etc. In order to make flunoxaprofen water-soluble, yet still active and efficient, it must be mixed withlysine and then suspended in an organic solvent that is soluble in water. A salt will crystallize upon cooling. The salt must then be filtered out and dried. Pharmacological testing of this now water-soluble compound has shown that it has anti-inflammatory properties equal to flunoxaprofen by itself.[5]

Pharmacokinetics

[edit]

The efficacy and safety of flunoxaprofen has been compared with those ofnaproxen inrheumatoid arthritis patients to show that the two drugs have equivalent therapeutical effects. Both drugs significantly relieve spontaneous pain which occurs both during the day and at night. Both drugs also significantly relieve the pain associated with active and passive motion and aid in relieving morning stiffness. The study also showed both drugs to be equally effective at improvinggrip strength.[6]

Flunoxaprofen is administered as racemate. The absorption and disposition of both enantiomers were studied in 1988. No significant differences between stereoisomers were detected with respect to their absorption and elimination half-lives.[7] However, further studies have shown that the S-enantiomer is the pharmacologically active form of the drug and does not undergo stereoinversion, while R-Flunoxaprofen is pharmacologically activated through biotransformation to the S-enantiomer.[8] This stereospecific chiral inversion is mediated by the FLX-S-Acyl-CoA thioester.[9] Pharmacokinetic studies with stereoselective bioassays have been carried out in different species after racemate dosage (and flunoxaprofen enantiomer derivatives have also been used as chiral fluorescent derivatizing agents to determine the enantiomers of other drug enantiomers in plasma).[10]

It has been shown that the dextrorotatory form is particularly active and has a much highertherapeutic index than some other anti-inflammatories, includingindomethacin anddiclofenac.[5] It has also been shown that flunoxaprofen inhibitsleukotriene rather thanprostaglandin synthesis. This is similar tobenoxaprofen. Flunoxaprofen andbenoxaprofen have been shown to have similar absorption characteristics. However, the distribution and elimination of flunoxaprofen has been shown to be much faster thanbenoxaprofen.[11]

Adverse effects

[edit]

A structural analog of flunoxaprofen isbenoxaprofen. The two drugs are carboxylic acid analogs that form reactive acyl glucuronides. Benoxaprofen has been shown to be involved in rare hepatotoxicity. Because of this, benoxaprofen has been removed from the market. In response to this the clinical use of flunoxaprofen has also stopped, even though studies have shown that flunoxaprofen is less toxic than benoxaprofen.

The toxicity of thesenonsteroidal anti-inflammatory drugs may be related to the covalent modification of proteins in response to the drugs' reactive acyl glucuronides. The reactivity of the acyl glucuronides appears to co-determine the extent of protein binding,[12] as initially proposed by the research group of Benet et al. in 1993.

References

[edit]
  1. ^DE 2324443, Evans, Delme; Dunwell, David William & Hicks, Terence Alan, "Benzoxazol-Derivate und Verfahren zu ihrer Herstellung [Benzoxazole Derivatives and processes for their production]", published 1973-11-29, assigned toLilly Industries Ltd. 
  2. ^D. Evans et al.,U.S. patent 3,912,748 (1975 toEli Lilly).
  3. ^Dunwell DW, Evans D, Hicks TA (January 1975). "2-aryl-5-benzoxazolealkanoic acid derivatives with notable antiinflammatory activity".Journal of Medicinal Chemistry.18 (1):53–58.doi:10.1021/jm00235a012.PMID 1109576.
  4. ^"Flunoxaprofen". Thieme. Retrieved2024-07-09.
  5. ^ab"Preparation process for making water-soluble lysine salts of (+)2-(4-fluorophenyl)-alpha-methyl-5-benzoxazole acetic acid"U.S. patent 5,120,851
  6. ^Fioravanti A, Giordano N, Megale F, Jovane D, Franci A, Marcolongo R (1989). "[Efficacy and tolerability of flunoxaprofen in the treatment of rheumatoid arthritis. A cross-over clinical study using naproxen]".La Clinica Terapeutica (in Italian).131 (2):83–91.PMID 2533024.
  7. ^Palatini P, Montanari G, Perosa A, Forgione A, Pedrazzini S, Furlanut M (1988). "Stereospecific disposition of flunoxaprofen enantiomers in human beings".International Journal of Clinical Pharmacology Research.8 (3):161–7.PMID 3403103.
  8. ^Pedrazzini S, De Angelis M, Muciaccia WZ, Sacchi C, Forgione A (1988). "Stereochemical pharmacokinetics of the 2-arylpropionic acid non-steroidal antiinflammatory drug flunoxaprofen in rats and in man".Arzneimittel-Forschung.38 (8):1170–5.PMID 3196413.
  9. ^Grillo MP, Wait JC, Tadano Lohr M, Khera S, Benet LZ (2010)."Stereoselective flunoxaprofen-S-acyl-glutathione thioester formation mediated by acyl-CoA formation in rat hepatocytes".Drug Metabolism and Disposition.38 (1):133–42.doi:10.1124/dmd.109.029371.PMC 2802421.PMID 19786506.
  10. ^Martin E, Quinke K, Spahn H, Mutschler E (1989). "(−)-(S)-flunoxaprofen and (−)-(S)-naproxen isocyanate: two new fluorescent chiral derivatizing agents for an enantiospecific determination of primary and secondary amines".Chirality.1 (3):223–34.doi:10.1002/chir.530010308.PMID 2642051.
  11. ^Furlanut M, Montanari G, Perosa A, Velussi C, Forgione A, Palatini P (1985). "Absorption and disposition kinetics of flunoxaprofen and benoxaprofen in healthy volunteers".International Journal of Clinical Pharmacology Research.5 (3):165–70.PMID 4018949.
  12. ^Dong JQ, Liu J, Smith PC (2005). "Role of benoxaprofen and flunoxaprofen acyl glucuronides in covalent binding to rat plasma and liver proteins in vivo".Biochemical Pharmacology.70 (6):937–48.doi:10.1016/j.bcp.2005.05.026.PMID 16046212.
pyrazolones /
pyrazolidines
salicylates
acetic acid derivatives
and related substances
oxicams
propionic acid
derivatives (profens)
n-arylanthranilic
acids (fenamates)
COX-2 inhibitors
(coxibs)
other
NSAID
combinations
Key:underline indicates initially developed first-in-class compound of specific group;#WHO-Essential Medicines;withdrawn drugs;veterinary use.
Prolactin inhibitors
Anti-inflammatory products
forvaginal administration
Receptor
(ligands)
DP (D2)Tooltip Prostaglandin D2 receptor
DP1Tooltip Prostaglandin D2 receptor 1
DP2Tooltip Prostaglandin D2 receptor 2
EP (E2)Tooltip Prostaglandin E2 receptor
EP1Tooltip Prostaglandin EP1 receptor
EP2Tooltip Prostaglandin EP2 receptor
EP3Tooltip Prostaglandin EP3 receptor
EP4Tooltip Prostaglandin EP4 receptor
Unsorted
FP (F)Tooltip Prostaglandin F receptor
IP (I2)Tooltip Prostacyclin receptor
TP (TXA2)Tooltip Thromboxane receptor
Unsorted
Enzyme
(inhibitors)
COX
(
PTGS)
PGD2STooltip Prostaglandin D synthase
PGESTooltip Prostaglandin E synthase
PGFSTooltip Prostaglandin F synthase
PGI2STooltip Prostacyclin synthase
TXASTooltip Thromboxane A synthase
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=Flunoxaprofen&oldid=1268657042"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp