Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Euclidean topology

From Wikipedia, the free encyclopedia
Topological structure of Euclidean space
icon
This articleduplicates the scope of other articles, specificallyReal_coordinate_space#Topological_properties. Pleasediscuss this issue and help introduce asummary style to the article.(June 2025)

In mathematics, and especiallygeneral topology, theEuclidean topology is thenatural topology induced onn{\displaystyle n}-dimensionalEuclidean spaceRn{\displaystyle \mathbb {R} ^{n}} by theEuclidean metric.

Definition

[edit]

TheEuclidean norm onRn{\displaystyle \mathbb {R} ^{n}} is the non-negative function:RnR{\displaystyle \|\cdot \|:\mathbb {R} ^{n}\to \mathbb {R} } defined by(p1,,pn) := p12++pn2.{\displaystyle \left\|\left(p_{1},\ldots ,p_{n}\right)\right\|~:=~{\sqrt {p_{1}^{2}+\cdots +p_{n}^{2}}}.}

Like allnorms, it induces a canonicalmetric defined byd(p,q)=pq.{\displaystyle d(p,q)=\|p-q\|.} The metricd:Rn×RnR{\displaystyle d:\mathbb {R} ^{n}\times \mathbb {R} ^{n}\to \mathbb {R} } induced by theEuclidean norm is called theEuclidean metric or theEuclidean distance and the distance between pointsp=(p1,,pn){\displaystyle p=\left(p_{1},\ldots ,p_{n}\right)} andq=(q1,,qn){\displaystyle q=\left(q_{1},\ldots ,q_{n}\right)} isd(p,q) = pq = (p1q1)2+(p2q2)2++(piqi)2++(pnqn)2.{\displaystyle d(p,q)~=~\|p-q\|~=~{\sqrt {\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}+\cdots +\left(p_{i}-q_{i}\right)^{2}+\cdots +\left(p_{n}-q_{n}\right)^{2}}}.}

In anymetric space, theopen balls form abase for a topology on that space.[1] The Euclidean topology onRn{\displaystyle \mathbb {R} ^{n}} is the topologygenerated by these balls. In other words, the open sets of the Euclidean topology onRn{\displaystyle \mathbb {R} ^{n}} are given by (arbitrary) unions of the open ballsBr(p){\displaystyle B_{r}(p)} defined asBr(p):={xRn:d(p,x)<r},{\displaystyle B_{r}(p):=\left\{x\in \mathbb {R} ^{n}:d(p,x)<r\right\},} for all realr>0{\displaystyle r>0} and allpRn,{\displaystyle p\in \mathbb {R} ^{n},} whered{\displaystyle d} is the Euclidean metric.

Properties

[edit]

When endowed with this topology, the real lineR{\displaystyle \mathbb {R} } is aT5 space. Given two subsets sayA{\displaystyle A} andB{\displaystyle B} ofR{\displaystyle \mathbb {R} } withA¯B=AB¯=,{\displaystyle {\overline {A}}\cap B=A\cap {\overline {B}}=\varnothing ,} whereA¯{\displaystyle {\overline {A}}} denotes theclosure ofA,{\displaystyle A,} there exist open setsSA{\displaystyle S_{A}} andSB{\displaystyle S_{B}} withASA{\displaystyle A\subseteq S_{A}} andBSB{\displaystyle B\subseteq S_{B}} such thatSASB=.{\displaystyle S_{A}\cap S_{B}=\varnothing .}[2]

See also

[edit]

References

[edit]
  1. ^Metric space#Open and closed sets.2C topology and convergence
  2. ^Steen, L. A.; Seebach, J. A. (1995),Counterexamples in Topology, Dover,ISBN 0-486-68735-X
Retrieved from "https://en.wikipedia.org/w/index.php?title=Euclidean_topology&oldid=1297502441"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp