Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Einstein relation (kinetic theory)

From Wikipedia, the free encyclopedia
Equation in Brownian motion

Inphysics (specifically, thekinetic theory of gases), theEinstein relation is a previously unexpected[clarification needed] connection revealed independently byWilliam Sutherland in 1904,[1][2][3]Albert Einstein in 1905,[4] and byMarian Smoluchowski in 1906[5] in their works onBrownian motion. The more general form of the equation in the classical case is[6]

D=μkBT,{\displaystyle D=\mu \,k_{\text{B}}T,}where

This equation is an early example of afluctuation-dissipation relation.[7]Note that the equation above describes the classical case and should be modified when quantum effects are relevant.

Two frequently used important special forms of the relation are:

Here

Special cases

[edit]

Electrical mobility equation (classical case)

[edit]

For a particle withelectrical chargeq, itselectrical mobilityμq is related to its generalized mobilityμ by the equationμ =μq/q. The parameterμq is the ratio of the particle's terminaldrift velocity to an appliedelectric field. Hence, the equation in the case of a charged particle is given asD=μqkBTq,{\displaystyle D={\frac {\mu _{q}\,k_{\text{B}}T}{q}},}

where

If the temperature is given involts, which is more common for plasma:D=μqTZ,{\displaystyle D={\frac {\mu _{q}\,T}{Z}},}where

Electrical mobility equation (quantum case)

[edit]

For the case ofFermi gas or aFermi liquid, relevant for the electron mobility in normal metals like in thefree electron model, Einstein relation should be modified:D=μqEFq,{\displaystyle D={\frac {\mu _{q}\,E_{\mathrm {F} }}{q}},}whereEF{\displaystyle E_{\mathrm {F} }} isFermi energy.

Stokes–Einstein–Sutherland equation

[edit]

In the limit of lowReynolds number, the mobilityμ is the inverse of the drag coefficientζ{\displaystyle \zeta }. A damping constantγ=ζ/m{\displaystyle \gamma =\zeta /m} is frequently used for the inverse momentum relaxation time (time needed for the inertia momentum to become negligible compared to the random momenta) of the diffusive object. For spherical particles of radiusr,Stokes' law givesζ=6πηr,{\displaystyle \zeta =6\pi \,\eta \,r,}whereη{\displaystyle \eta } is theviscosity of the medium. Thus the Einstein–Smoluchowski relation results into the Stokes–Einstein–Sutherland relationD=kBT6πηr.{\displaystyle D={\frac {k_{\text{B}}T}{6\pi \,\eta \,r}}.}This has been applied for many years to estimating the self-diffusion coefficient in liquids, and a version consistent with isomorph theory has been confirmed by computer simulations of theLennard-Jones system.[10]

In the case ofrotational diffusion, the friction isζr=8πηr3{\displaystyle \zeta _{\text{r}}=8\pi \eta r^{3}}, and the rotational diffusion constantDr{\displaystyle D_{\text{r}}} isDr=kBT8πηr3.{\displaystyle D_{\text{r}}={\frac {k_{\text{B}}T}{8\pi \,\eta \,r^{3}}}.}This is sometimes referred to as the Stokes–Einstein–Debye relation.

Semiconductor

[edit]

In asemiconductor with an arbitrarydensity of states, i.e. a relation of the formp=p(φ){\displaystyle p=p(\varphi )} between the density of holes or electronsp{\displaystyle p} and the correspondingquasi Fermi level (orelectrochemical potential)φ{\displaystyle \varphi }, the Einstein relation is[11][12]D=μqpqdpdφ,{\displaystyle D={\frac {\mu _{q}p}{q{\frac {dp}{d\varphi }}}},}whereμq{\displaystyle \mu _{q}} is theelectrical mobility (see§ Proof of the general case for a proof of this relation). An example assuming aparabolic dispersion relation for the density of states and theMaxwell–Boltzmann statistics, which is often used to describeinorganicsemiconductor materials, one can compute (seedensity of states):p(φ)=N0eqφkBT,{\displaystyle p(\varphi )=N_{0}e^{\frac {q\varphi }{k_{\text{B}}T}},}whereN0{\displaystyle N_{0}} is the total density of available energy states, which gives the simplified relation:D=μqkBTq.{\displaystyle D=\mu _{q}{\frac {k_{\text{B}}T}{q}}.}

Nernst–Einstein equation

[edit]

By replacing the diffusivities in the expressions of electric ionic mobilities of the cations and anions from the expressions of theequivalent conductivity of an electrolyte the Nernst–Einstein equation is derived:Λe=zi2F2RT(D++D).{\displaystyle \Lambda _{e}={\frac {z_{i}^{2}F^{2}}{RT}}(D_{+}+D_{-}).}wereR is thegas constant.

Proof of the general case

[edit]

The proof of the Einstein relation can be found in many references, for example see the work ofRyogo Kubo.[13] The following derives it from the steady state of theconvection-diffusion equation with a velocity proportional to a conservative force.

Suppose some fixed, externalpotential energyU{\displaystyle U} generates aconservative forceF(x)=U(x){\displaystyle F(\mathbf {x} )=-\nabla U(\mathbf {x} )} (for example, an electric force) on a particle located at a given positionx{\displaystyle \mathbf {x} }. We assume that the particle would respond by moving with velocityv(x)=μ(x)F(x){\displaystyle v(\mathbf {x} )=\mu (\mathbf {x} )F(\mathbf {x} )} (seeDrag (physics)). Now assume that there are a large number of such particles, with local concentrationρ(x){\displaystyle \rho (\mathbf {x} )} as a function of the position. After some time, equilibrium will be established: particles will pile up around the areas with lowest potential energyU{\displaystyle U}, but still will be spread out to some extent because ofdiffusion. At equilibrium, there is no net flow of particles: the tendency of particles to get pulled towards lowerU{\displaystyle U}, called thedrift current, perfectly balances the tendency of particles to spread out due to diffusion, called thediffusion current.

The net flux of particles due to the drift current isJdrift(x)=μ(x)F(x)ρ(x)=ρ(x)μ(x)U(x),{\displaystyle \mathbf {J} _{\mathrm {drift} }(\mathbf {x} )=\mu (\mathbf {x} )F(\mathbf {x} )\rho (\mathbf {x} )=-\rho (\mathbf {x} )\mu (\mathbf {x} )\nabla U(\mathbf {x} ),}i.e., the number of particles flowing past a given position equals the particle concentration times the average velocity.

The flow of particles due to the diffusion current is, byFick's law,Jdiffusion(x)=D(x)ρ(x),{\displaystyle \mathbf {J} _{\mathrm {diffusion} }(\mathbf {x} )=-D(\mathbf {x} )\nabla \rho (\mathbf {x} ),}where the minus sign means that particles flow from higher to lower concentration.

Now consider the equilibrium condition. First, there is no net flow, i.e.Jdrift+Jdiffusion=0{\displaystyle \mathbf {J} _{\mathrm {drift} }+\mathbf {J} _{\mathrm {diffusion} }=0}. Second, for non-interacting point particles, the equilibrium densityρ{\displaystyle \rho } is solely a function of the local potential energyU{\displaystyle U}, i.e. if two locations have the sameU{\displaystyle U} then they will also have the sameρ{\displaystyle \rho } (e.g. seeMaxwell-Boltzmann statistics as discussed below.) That means, applying thechain rule,ρ=dρdUU.{\displaystyle \nabla \rho ={\frac {\mathrm {d} \rho }{\mathrm {d} U}}\nabla U.}

Therefore, at equilibrium:0=Jdrift+Jdiffusion=μρUDρ=(μρDdρdU)U.{\displaystyle 0=\mathbf {J} _{\mathrm {drift} }+\mathbf {J} _{\mathrm {diffusion} }=-\mu \rho \nabla U-D\nabla \rho =\left(-\mu \rho -D{\frac {\mathrm {d} \rho }{\mathrm {d} U}}\right)\nabla U.}

As this expression holds at every positionx{\displaystyle \mathbf {x} }, it implies the general form of the Einstein relation:D=μρdρdU.{\displaystyle D=-\mu {\frac {\rho }{\frac {\mathrm {d} \rho }{\mathrm {d} U}}}.}

The relation betweenρ{\displaystyle \rho } andU{\displaystyle U} forclassical particles can be modeled throughMaxwell-Boltzmann statisticsρ(x)=AeU(x)kBT,{\displaystyle \rho (\mathbf {x} )=Ae^{-{\frac {U(\mathbf {x} )}{k_{\text{B}}T}}},}whereA{\displaystyle A} is a constant related to the total number of particles. ThereforedρdU=1kBTρ.{\displaystyle {\frac {\mathrm {d} \rho }{\mathrm {d} U}}=-{\frac {1}{k_{\text{B}}T}}\rho .}

Under this assumption, plugging this equation into the general Einstein relation gives:D=μρdρdU=μkBT,{\displaystyle D=-\mu {\frac {\rho }{\frac {\mathrm {d} \rho }{\mathrm {d} U}}}=\mu k_{\text{B}}T,}which corresponds to the classical Einstein relation.

See also

[edit]

References

[edit]
  1. ^World Year of Physics – William Sutherland at the University of Melbourne. Essay by Prof. R Home (with contributions from Prof B. McKellar and A./Prof D. Jamieson) dated 2005. Accessed 2017-04-28.
  2. ^Sutherland William (1905)."LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin".Philosophical Magazine. Series 6.9 (54):781–785.doi:10.1080/14786440509463331.
  3. ^P. Hänggi,"Stokes–Einstein–Sutherland equation".
  4. ^Einstein, A.BENYAM.MULUGETA.KOBESO.>A.FEMININE.A.CASE.>.A.MASCULINE.A.CASE.A.FOOD.A.BBITE.// (1905)."Über die von der molekularkinetischen.FREHIWOT.WOLDERUFAEL.TEKLEHAYMANOT.≠ Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen".Annalen der Physik (in German).322 (8):549–560.Bibcode:1905AnP...322..549E.doi:10.1002/andp.19053220806.
  5. ^von Smoluchowski, M. (1906)."Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen".Annalen der Physik (in German).326 (14):756–780.Bibcode:1906AnP...326..756V.doi:10.1002/andp.19063261405.
  6. ^Dill, Ken A.; Bromberg, Sarina (2003).Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science. p. 327.ISBN 9780815320517.
  7. ^Umberto Marini Bettolo Marconi, Andrea Puglisi, Lamberto Rondoni, Angelo Vulpiani,"Fluctuation-Dissipation: Response Theory in Statistical Physics".
  8. ^Van Zeghbroeck, "Principles of Semiconductor Devices",Chapter 2.7Archived 2021-05-06 at theWayback Machine.
  9. ^Raizer, Yuri (2001).Gas Discharge Physics. Springer. pp. 20–28.ISBN 978-3540194620.
  10. ^Costigliola, Lorenzo; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C. (2019-01-14)."Revisiting the Stokes-Einstein relation without a hydrodynamic diameter"(PDF).The Journal of Chemical Physics.150 (2): 021101.Bibcode:2019JChPh.150b1101C.doi:10.1063/1.5080662.ISSN 0021-9606.PMID 30646717.
  11. ^Ashcroft, N. W.; Mermin, N. D. (1988).Solid State Physics. New York (USA): Holt, Rineheart and Winston. p. 826.
  12. ^Bonnaud, Olivier (2006).Composants à semiconducteurs (in French). Paris (France): Ellipses. p. 78.
  13. ^Kubo, R. (1966). "The fluctuation-dissipation theorem".Rep. Prog. Phys.29 (1):255–284.arXiv:0710.4394.Bibcode:1966RPPh...29..255K.doi:10.1088/0034-4885/29/1/306.S2CID 250892844.

External links

[edit]
Physics
Works
In popular
culture
Prizes
Books about
Einstein
Family
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Einstein_relation_(kinetic_theory)&oldid=1338291457"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp