Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Chlamydiota

From Wikipedia, the free encyclopedia
(Redirected fromChlamydiia)
Phylum of bacteria

Chlamydiota
Chlamydia trachomatis
Scientific classificationEdit this classification
Domain:Bacteria
Kingdom:Pseudomonadati
Superphylum:"PVC"
Phylum:Chlamydiota
Garrity & Holt 2021[3]
Class:Chlamydiia
Horn 2016[1][2]
Orders and families
Synonyms
  • Chlamydiota:
    • "Chlamydaeota"Oren et al. 2015
    • "Chlamydiae"Garrity and Holt 2001
    • "Chlamydiota"Whitman et al. 2018
    • "Chlamydobacteriae"Buchanan 1917
  • Chlamydiia:

TheChlamydiota (synonymChlamydiae) are abacterialphylum andclass whose members are remarkably diverse, includingpathogens of humans and animals,symbionts of ubiquitousprotozoa,[4] and marine sediment forms not yet well understood.[5] All of the Chlamydiota that humans have known about for many decades are obligate intracellular bacteria; in 2020 many additional Chlamydiota were discovered in ocean-floor environments, and it is not yet known whether they all havehosts.[5]

Of various Chlamydiota that cause human disease, the two most important species areChlamydia pneumoniae, which causes a type ofpneumonia, andChlamydia trachomatis, which causeschlamydia. Chlamydia is the most common bacterialsexually transmitted infection in the United States, and 2.86 million chlamydia infections are reported annually.

Biology

[edit]

Ecology and life cycle

[edit]

Among the Chlamydiota, all of the ones long known to science grow only by infectingeukaryotic host cells. They are as small as or smaller than manyviruses. They are ovoid in shape and stainGram-negative. They are dependent on replication inside the host cells; thus, some species are termed obligateintracellular pathogens and others are symbionts of ubiquitous protozoa. Most intracellular Chlamydiota are located in aninclusion body orvacuole; when growing in a cell, they survive in a metabolically active but noninfectious form called the reticulate body. Outside cells, they survive only as an infectious, spore-like form called the elementary body.

These Chlamydiota can grow only where their host cells grow, and develop according to a characteristic biphasic developmental cycle.[6][7][8] Therefore,clinically relevant Chlamydiotacannot be propagated in bacterial culture media in the clinical laboratory. They are most successfully isolated while still inside their host cells.

In 2020 many additional Chlamydiota were discovered in ocean-floor environments, and it is not yet known whether they all havehosts.[5]

Peptidoglycan

[edit]

Scientists have long known that Chlamydiota are susceptible to antibiotics that target the production ofpeptidoglycan (PG) such as penicillin, yet have for a long time failed to find any PG in their cell walls.[9] In 2013,Protochlamydia amoebophila was shown to have a sacculus made of PG whileSimkania negevensis does not. There is noFtsZ gene, which is previously believed to be essential for cell division in the presence of PG, in either of them.[10] In 2014, the human pathogenChlamydia trachomatis was shown to contain PG in its intracellular stage, apparently forming rings.[11] In 2016, the role of PG inChlamydia was clarified using more data: it does not make a whole sacculus around the cell like usual bacteria andProtochlamydia do, but instead produces a thin ring of PG down the middle during cell division.MreB controls the production of the ring, taking up the role thatFtsZ would've performed. This explains why penicillin is bacteriostatic and not bacteriocidal toChlamydia.[12]

The elemental bodies ofChlamydiaare characterized by the presence of a tough cell wall. This wall is not made of PG, but instead consists of a network of proteins.[13]

History

[edit]

Chlamydia-like disease affecting the eyes of people was first described in ancient Chinese and Egyptian manuscripts. A modern description of chlamydia-like organisms was provided by Halberstaedrrter andvon Prowazek in 1907.

Chlamydial isolates cultured in the yolk sacs of embryonating eggs were obtained from a humanpneumonitis outbreak in the late 1920s and early 1930s, and by the mid-20th century, isolates had been obtained from dozens of vertebrate species. The term chlamydia (a cloak) appeared in the literature in 1945, although other names continued to be used, including Bedsonia, Miyagawanella, ornithosis-, TRIC-, and PLT-agents. In 1956,Chlamydia trachomatis was first cultured byTang Fei-fan, though they were not yet recognized as bacteria.[14]

Nomenclature

[edit]

In 1966, Chlamydiota were recognized as bacteria and the genusChlamydia was validated.[15] The orderChlamydiales was created by Storz and Page in 1971. The classChlamydiia was recently validly published.[16][17][18] Between 1989 and 1999, new families, genera, and species were recognized. The phylum Chlamydiae was established inBergey's Manual of Systematic Bacteriology.[19] By 2006, genetic data for over 350 chlamydial lineages had been reported.[20] Discovery of ocean-floor forms reported in 2020 involves newclades.[5] In 2022 the phylum was renamed Chlamydiota.[3]

Taxonomy and molecular signatures

[edit]

The Chlamydiota currently contain eight validly named genera, and 14 genera.[21] The phylum presently consist of two orders (Chlamydiales, Parachlamydiales) and nine families within a single class (Chlamydiia).[16][17] Only four of these families are validly named (Chlamydiaceae,Parachlamydiaceae,Simkaniaceae,Waddliaceae)[22][23] while five are described as families (Clavichlamydiaceae,Criblamydiaceae,Parilichlamydiaceae,Piscichlamydiaceae, andRhabdochlamydiaceae).[24][25][26]

The Chlamydiales order as recently described contains the families Chlamydiaceae, and theClavichlamydiaceae, while the new Parachlamydiales order harbors the remaining seven families.[16] This proposal is supported by the observation of two distinct phylogenetic clades that warrant taxonomic ranks above the family level. Molecular signatures in the form ofconserved indels (CSIs) and proteins (CSPs) have been found to be uniquely shared by each separate order, providing a means of distinguishing each clade from the other and supporting the view of shared ancestry of the families within each order.[16][27] The distinctness of the two orders is also supported by the fact that no CSIs were found among any other combination of families.

Molecular signatures have also been found that are exclusive for the family Chlamydiaceae.[16][27] The Chlamydiaceae originally consisted of one genus,Chlamydia, but in 1999 was split into two genera,Chlamydophila andChlamydia. The genera have since 2015 been reunited where species belonging to the genus Chlamydophila have been reclassified as Chlamydia species.[28][29]

However, CSIs and CSPs have been found specifically forChlamydophila species, supporting their distinctness from Chlamydia, perhaps warranting additional consideration of two separate groupings within the family. CSIs and CSPs have also been found that are exclusively shared by allChlamydia that are further indicative of a lineage independent fromChlamydophila, supporting a means to distinguishChlamydia species from neighbouringChlamydophila members.[16][27]

The currently accepted taxonomy is based on theList of Prokaryotic names with Standing in Nomenclature (LPSN)[30] andNational Center for Biotechnology Information (NCBI).[21]

Evolution

[edit]

The Chlamydiota form a unique bacterial evolutionary group that separated from other bacteria about a billion years ago, and can be distinguished by the presence of several CSIs and CSPs.[16][27][32][8] The species from this group can be distinguished from all other bacteria by the presence of conservedindels in a number of proteins and by large numbers of signature proteins that are uniquely present in different Chlamydiae species.[33][34]

The Chlamydiota is interesting in that the order Chlamydiales (which contains all validly-published members before 2010) have no known free-living members. Considering most bacteria are free-living, there has to be some point when the lineage branched off into being intracellular. Identifying where that branch had happened and the original host remains somewhat controversial.[35]

As of 2003 it was commonly believed that Chlamydiota shares acommon ancestor withcyanobacteria, the group containing theendosymbiont ancestor to thechloroplasts of modernplants.[36] This was due to studies showing specific genes, later entire genomic contents, to be most similar to cyanobacteria and land plants. A 2004 study found that 11% of the genes inProtochlamydia amoebophila UWE25 and 4% in the Chlamydiaceae are most similar tochloroplastic,plant, andcyanobacterial genes.[8] In 2006, an article notedL,L-diaminopimelate aminotransferase as remarkably similar to the plant and cyanobacterial versions.[37] An alternative, no less unusual interpretation from 2008 is that aChlamydia might have been an endosymbioant of an ancestral plant, having transferring away some of its genes to the host before being lost.[36]

Before the cyanobacterial hypothesis there were competing hypotheses involvingPlanctomycetota orSpirochaetota. The Planctomycetota theory has been present since 1987 withCavalier-Smith's Planctobacteria.[38] This view was almost killed off by a 2000 study showing no significant link in 23S rRNA (just like earlier 16S rRNA analyses did).[39]James W. Molder, writing in 2003, believed that this represented the end of the Planctomycetes theory.[40] However, growing evidence points to an actual link between these two phyla in what has since been known as thePVC superphylum.[41][42][43] Phylogeny and shared presence of CSIs in proteins that are lineage-specific indicate that theVerrucomicrobiota are the closest free-living relatives of these parasitic organisms as of 2007.[44]

Comparison ofribosomal RNA genes has provided aphylogeny of known strains within Chlamydiota.[20] Trees have since been built using more loci. See§ Phylogeny below.

Phylogeny

[edit]
16S rRNA basedLTP_10_2024[45][46][47]120 marker proteins basedGTDB 10-RS226[48][49][50]
"Similichlamydiales"

"Parilichlamydiaceae"

Chlamydiales

For the placement of taxa not found here, consult e.g. Gupta et al. (2015).[31]

Human pathogens and diagnostics

[edit]

Three species of Chlamydiota that commonly infect humans are described:

The unique physiological status of the Chlamydiota including their biphasic lifecycle and obligation to replicate within a eukaryotic host has enabled the use of DNA analysis for chlamydial diagnostics.[51]Horizontal transfer of genes is evident and complicates this area of research. In one extreme example, two genes encoding histone-like H1 proteins of eukaryotic origin have been found in the prokaryotic genome of C. trachomatis, an obligateintracellular pathogen.

See also

[edit]

References

[edit]
  1. ^Horn M. (2010). "Class I.Chlamydiia class. nov.". In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds.).Bergey's Manual of Systematic Bacteriology. Vol. 4 (2nd ed.). New York, NY: Springer. p. 844.doi:10.1007/978-0-387-68572-4.ISBN 978-0-387-95042-6.
  2. ^Oren A, Garrity GM (2016)."Validation list no. 170. List of new names and new combinations previously effectively, but not validly, published".Int J Syst Evol Microbiol.66 (7):2463–2466.doi:10.1099/ijsem.0.001149.PMID 27530111.
  3. ^abOren A, Garrity GM (2021)."Valid publication of the names of forty-two phyla of prokaryotes".Int J Syst Evol Microbiol.71 (10): 5056.doi:10.1099/ijsem.0.005056.PMID 34694987.S2CID 239887308.
  4. ^Sixt BS, Siegl A, Müller C, Watzka M, Wultsch A, Tziotis D, et al. (2013)."Metabolic features of Protochlamydia amoebophila elementary bodies—a link between activity and infectivity in Chlamydiae".PLOS Pathogens.9 (8) e1003553.doi:10.1371/journal.ppat.1003553.PMC 3738481.PMID 23950718.
  5. ^abcdDharamshi JE, Tamarit D, Eme L, Stairs CW, Martijn J, Homa F, et al. (March 2020)."Marine Sediments Illuminate Chlamydiae Diversity and Evolution".Current Biology.30 (6): 1032–1048.e7.Bibcode:2020CBio...30E1032D.doi:10.1016/j.cub.2020.02.016.PMID 32142706.S2CID 212423997.
  6. ^Horn M (2008). "Chlamydiae as symbionts in eukaryotes".Annual Review of Microbiology.62:113–131.doi:10.1146/annurev.micro.62.081307.162818.PMID 18473699.S2CID 13405815.
  7. ^Abdelrahman YM, Belland RJ (November 2005)."The chlamydial developmental cycle".FEMS Microbiology Reviews.29 (5):949–959.doi:10.1016/j.femsre.2005.03.002.PMID 16043254.
  8. ^abcHorn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, et al. (April 2004)."Illuminating the evolutionary history of Chlamydiae".Science.304 (5671):728–730.Bibcode:2004Sci...304..728H.doi:10.1126/science.1096330.PMID 15073324.S2CID 39036549.
  9. ^Jacquier N, Viollier PH, Greub G (March 2015)."The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly".FEMS Microbiology Reviews.39 (2):262–275.doi:10.1093/femsre/fuv001.PMID 25670734.
  10. ^Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E, Hall E, et al. (2013-12-02)."Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ".Nature Communications.4 (1): 2856.Bibcode:2013NatCo...4.2856P.doi:10.1038/ncomms3856.PMC 3847603.PMID 24292151.
  11. ^Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, Maurelli AT (February 2014)."A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis".Nature.506 (7489):507–510.Bibcode:2014Natur.506..507L.doi:10.1038/nature12892.PMC 3997218.PMID 24336210.
  12. ^Liechti G, Kuru E, Packiam M, Hsu YP, Tekkam S, Hall E, et al. (May 2016)."Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division".PLOS Pathogens.12 (5) e1005590.doi:10.1371/journal.ppat.1005590.PMC 4856321.PMID 27144308.
  13. ^Elwell, Cherilyn; Mirrashidi, Kathleen; Engel, Joanne (June 2016)."Chlamydia cell biology and pathogenesis".Nature Reviews. Microbiology.14 (6):385–400.doi:10.1038/nrmicro.2016.30.PMC 4886739.PMID 27108705.
  14. ^Philip S. Brachman and Elias Abrutyn (2009-07-23).Bacterial Infections of Humans: Epidemiology and Control. Springer.ISBN 978-0-387-09842-5.
  15. ^Moulder JW (1966). "The relation of the psittacosis group (Chlamydiae) to bacteria and viruses".Annual Review of Microbiology.20:107–130.doi:10.1146/annurev.mi.20.100166.000543.PMID 5330228.
  16. ^abcdefgGupta RS, Naushad S, Chokshi C, Griffiths E, Adeolu M (September 2015). "A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: Proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia".Antonie van Leeuwenhoek.108 (3):765–781.doi:10.1007/s10482-015-0532-1.PMID 26179278.S2CID 17099157.
  17. ^abOren A, Garrity GM (July 2016)."List of new names and new combinations previously effectively, but not validly, published".International Journal of Systematic and Evolutionary Microbiology.66 (7):2463–2466.doi:10.1099/ijsem.0.001149.PMID 27530111.
  18. ^Storz J, Page LA (1971)."Taxonomy of the Chlamydiae: reasons for classifying organisms of the genus Chlamydia, family Chlamydiaceae, in a separate order, Chlamydiales ord. nov".International Journal of Systematic Bacteriology.21 (4):332–334.doi:10.1099/00207713-21-4-332.
  19. ^Garrity GM, Boone DR (2001).Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria (2nd ed.). Springer.ISBN 978-0-387-98771-2.
  20. ^abEverett KD, Thao M, Horn M, Dyszynski GE, Baumann P (July 2005)."Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm".International Journal of Systematic and Evolutionary Microbiology.55 (Pt 4):1581–1587.doi:10.1099/ijs.0.63454-0.PMID 16014485.
  21. ^abSchoch CL; et al."Chlamydiota".National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved2025-06-05.
  22. ^Everett KD, Bush RM, Andersen AA (April 1999)."Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms".International Journal of Systematic Bacteriology.49 (Pt 2):415–440.doi:10.1099/00207713-49-2-415.PMID 10319462.
  23. ^Rurangirwa FR, Dilbeck PM, Crawford TB, McGuire TC, McElwain TF (April 1999)."Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov".International Journal of Systematic Bacteriology.49 (Pt 2):577–581.doi:10.1099/00207713-49-2-577.PMID 10319478.
  24. ^Thomas V, Casson N, Greub G (December 2006). "Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture".Environmental Microbiology.8 (12):2125–2135.Bibcode:2006EnvMi...8.2125T.doi:10.1111/j.1462-2920.2006.01094.x.PMID 17107554.S2CID 31211875.
  25. ^Stride MC, Polkinghorne A, Miller TL, Groff JM, Lapatra SE, Nowak BF (March 2013)."Molecular characterization of "Candidatus Parilichlamydia carangidicola," a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, "Candidatus Parilichlamydiaceae" fam. nov. (order Chlamydiales)".Applied and Environmental Microbiology.79 (5):1590–1597.Bibcode:2013ApEnM..79.1590S.doi:10.1128/AEM.02899-12.PMC 3591964.PMID 23275507.
  26. ^Kuo C-C, Horn M, Stephens RS (2011) Order I. Chlamydiales. In: Bergey's Manual of Systematic Bacteriology, vol. 4, 2nd ed. pp. 844-845. Eds Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W. Springer-: New York.
  27. ^abcdGriffiths E, Ventresca MS, Gupta RS (January 2006)."BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species".BMC Genomics.7: 14.doi:10.1186/1471-2164-7-14.PMC 1403754.PMID 16436211.
  28. ^Sachse K, Bavoil PM, Kaltenboeck B, Stephens RS, Kuo CC, Rosselló-Móra R, Horn M (March 2015). "Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species".Systematic and Applied Microbiology.38 (2):99–103.Bibcode:2015SyApM..38...99S.doi:10.1016/j.syapm.2014.12.004.hdl:10261/123714.PMID 25618261.
  29. ^Oren A, Garrity GM (2015). "List of new names and new combinations previously effectively, but not validly, published".Int J Syst Evol Microbiol.65 (7):2017–2025.doi:10.1099/ijs.0.000317.PMID 28056215.
  30. ^Chlamydiota inLPSN;Freese, H. M.; Meier-Kolthoff, J. P.; Sardà Carbasse, J.; Afolayan, A. O.; Göker, M. (29 October 2025). "TYGS and LPSN in 2025: a Global Core Biodata Resource for genome-based classification and nomenclature of prokaryotes within DSMZ Digital Diversity".Nucleic Acids Research.53:D1–D12.doi:10.1093/nar/gkaf1110.
  31. ^abGupta, Radhey S.; Naushad, Sohail; Chokshi, Chirayu; Griffiths, Emma; Adeolu, Mobolaji (September 2015). "A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia".Antonie van Leeuwenhoek.108 (3):765–781.doi:10.1007/s10482-015-0532-1.PMID 26179278.
  32. ^Greub G, Raoult D (September 2003)."History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago".Applied and Environmental Microbiology.69 (9):5530–5535.Bibcode:2003ApEnM..69.5530G.doi:10.1128/AEM.69.9.5530-5535.2003.PMC 194985.PMID 12957942.
  33. ^Griffiths E, Petrich AK, Gupta RS (August 2005)."Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification".Microbiology.151 (Pt 8):2647–2657.doi:10.1099/mic.0.28057-0.PMID 16079343.
  34. ^Gupta RS, Griffiths E (December 2006). "Chlamydiae-specific proteins and indels: novel tools for studies".Trends in Microbiology.14 (12):527–535.doi:10.1016/j.tim.2006.10.002.PMID 17049238.
  35. ^Moulder, James W. (2002)."Chlamydial and Chlamydiales evolution - index". Archived fromthe original on 20 November 2010.
  36. ^abMoulder, James W. (2008)."Plant Chlamydia relationships - Chlamydiales evolution - Chlamydia Plant relationships". Archived fromthe original on 21 November 2010.
  37. ^McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT (2006)."L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine".Proc. Natl. Acad. Sci. U.S.A.103 (47):17909–14.Bibcode:2006PNAS..10317909M.doi:10.1073/pnas.0608643103.PMC 1693846.PMID 17093042.
  38. ^Cavalier-Smith, T (1987). "The origin of eukaryote and archaebacterial cells".Annals of the New York Academy of Sciences.503 (1):17–54.Bibcode:1987NYASA.503...17C.doi:10.1111/j.1749-6632.1987.tb40596.x.PMID 3113314.S2CID 38405158.
  39. ^Ward NL, Rainey FA, Hedlund BP, Staley JT, Ludwig W, Stackebrandt E (November 2000)."Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny".International Journal of Systematic and Evolutionary Microbiology.50 (Pt 6):1965–1972.doi:10.1099/00207713-50-6-1965.PMID 11155969.
  40. ^Moulder, James W."The first intracellular Chlamydiales". Archived fromthe original on 21 November 2010.
  41. ^Teeling H, Lombardot T, Bauer M, Ludwig W, Glöckner FO (May 2004)."Evaluation of the phylogenetic position of the planctomycete 'Rhodopirellula baltica' SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees".International Journal of Systematic and Evolutionary Microbiology.54 (Pt 3):791–801.doi:10.1099/ijs.0.02913-0.PMID 15143026.
  42. ^Rivas-Marín, Elena; Devos, Damien P. (1 June 2018)."The Paradigms They Are a-Changin': past, present and future of PVC bacteria research".Antonie van Leeuwenhoek.111 (6):785–799.doi:10.1007/s10482-017-0962-z.PMC 5945725.PMID 29058138.
  43. ^Wagner, M.; Horn, M. (2006). "The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance".Current Opinion in Biotechnology.17 (3):241–249.doi:10.1016/j.copbio.2006.05.005.PMID 16704931.
  44. ^Griffiths E, Gupta RS (August 2007)."Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae".Microbiology.153 (Pt 8):2648–2654.doi:10.1099/mic.0.2007/009118-0.PMID 17660429.S2CID 2094762.
  45. ^"The LTP". Retrieved10 December 2024.
  46. ^"LTP_all tree in newick format". Retrieved10 December 2024.
  47. ^"LTP_10_2024 Release Notes"(PDF). Retrieved10 December 2024.
  48. ^"GTDB release 10-RS226".Genome Taxonomy Database. Retrieved1 May 2025.
  49. ^"bac120_r226.sp_label".Genome Taxonomy Database. Retrieved1 May 2025.
  50. ^"Taxon History".Genome Taxonomy Database. Retrieved1 May 2025.
  51. ^Corsaro D, Greub G (April 2006)."Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria".Clinical Microbiology Reviews.19 (2):283–297.doi:10.1128/CMR.19.2.283-297.2006.PMC 1471994.PMID 16614250.

External links

[edit]
Prokaryotes:Bacteria classification
Candidate Phyla
Radiation
  • "Elulimicrobiota"
    • "Elulimicrobia"
  • Minisyncoccota
    • "Absconditibacteria"
    • "Andersenbacteria"
    • "Berkelbacteria"
    • "Baikalibacteria"
    • "Dojkabacteriia"
    • "Doudnabacteria"
    • "Gracilibacteriia"
    • "Howlettbacteria"
    • "Katanibacteriia"
    • "Kazanbacteria"
    • "Microgenomatia"
    • Minisyncoccia
    • "Patescibacteriia"
    • "Saccharimonadia"
    • "Torokbacteria"
    • "Wirthbacteria"
"Synergistetes"
"Thermocalda"
"Cyanoprokaryota"
"Firmicutes"
  • Bacillota
  • Bacillota D
  • Bacillota E
    • "Fermentithermobacillia"
    • Sulfobacillia
    • Symbiobacteriia
    • Thermaerobacteria
  • Bacillota G
    • "Hydrogenisporia"
    • Limnochordia
  • "Clostridiota"
    • "Clostridiia"
    • "Thermoanaerobacteria"
    • Thermosediminibacteria
  • "Desulfotomaculota"
    • "Carboxydocellia"
    • "Carboxydothermia"
    • "Dehalobacteriia"
    • Desulfitobacteriia
    • Desulfotomaculia
    • "Moorellia"
    • Peptococcia
    • Syntrophomonadia
    • "Thermacetogeniia"
    • Thermincolia
  • "Halanaerobiaeota"
  • "Selenobacteria"
"Sphingobacteria"
"Planctobacteria"
"Proteobacteria"
Incertae sedis
Incertae sedis
GTDB 10-RS226;LTP_10_2024
Spirochaetota
Spirochaetaceae
Treponema
Borrelia
Leptospiraceae
Leptospira
Chlamydiota
Chlamydia
Bacteroidota
Fusobacteriota
Extantlife phyla/divisions by domain
Bacteria
Archaea
Eukaryote
Protist
Fungi
Land plant
Animal
Incertae sedis
Chlamydiae
Retrieved from "https://en.wikipedia.org/w/index.php?title=Chlamydiota&oldid=1329317581"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp