Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bochner integral

From Wikipedia, the free encyclopedia
Concept in mathematics
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(December 2024) (Learn how and when to remove this message)

Inmathematics, theBochner integral, named forSalomon Bochner, extends the definition of a multidimensionalLebesgue integral to functions that take values in aBanach space, as the limit of integrals ofsimple functions.

The Bochner integral provides the mathematical foundation for extensions of basicintegral transforms into more abstract spaces, vector-valued functions, and operator spaces. Examples of such extensions include vector-valuedLaplace transforms and abstractFourier transforms.[1]

Definition

[edit]

Let(X,Σ,μ){\displaystyle (X,\Sigma ,\mu )} be ameasure space, andB{\displaystyle B} be aBanach space, and define a measurable functionf:XB{\displaystyle f:X\to B}. WhenB=R{\displaystyle B=\mathbb {R} }, we have the standard Lebesgue integralXfdμ{\displaystyle \int _{X}fd\mu }, and whenB=Rn{\displaystyle B=\mathbb {R} ^{n}}, we have the standard multidimensional Lebesgue integralXfdμ{\displaystyle \int _{X}{\vec {f}}d\mu }. For generic Banach spaces, the Bochner integral extends the above cases.

First, define a simple function to be any finite sum of the forms(x)=i=1nχEi(x)bi,{\displaystyle s(x)=\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i},}where theEi{\displaystyle E_{i}} are disjoint members of theσ{\displaystyle \sigma }-algebraΣ,{\displaystyle \Sigma ,} thebi{\displaystyle b_{i}} are distinct elements ofB,{\displaystyle B,} and χE is thecharacteristic function ofE.{\displaystyle E.} Ifμ(Ei){\displaystyle \mu \left(E_{i}\right)} is finite wheneverbi0,{\displaystyle b_{i}\neq 0,} then the simple function isintegrable, and the integral is then defined byX[i=1nχEi(x)bi]dμ=i=1nμ(Ei)bi{\displaystyle \int _{X}\left[\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i}\right]\,d\mu =\sum _{i=1}^{n}\mu (E_{i})b_{i}}exactly as it is for the ordinary Lebesgue integral.

A measurable functionf:XB{\displaystyle f:X\to B} isBochner integrable if there exists a sequence of integrable simple functionssn{\displaystyle s_{n}} such thatlimnXfsnBdμ=0,{\displaystyle \lim _{n\to \infty }\int _{X}\|f-s_{n}\|_{B}\,d\mu =0,}where the integral on the left-hand side is an ordinary Lebesgue integral.

In this case, theBochner integral is defined byXfdμ=limnXsndμ.{\displaystyle \int _{X}f\,d\mu =\lim _{n\to \infty }\int _{X}s_{n}\,d\mu .}

It can be shown that the sequence{Xsndμ}n=1{\displaystyle \left\{\int _{X}s_{n}\,d\mu \right\}_{n=1}^{\infty }} is aCauchy sequence in the Banach spaceB,{\displaystyle B,} hence the limit on the right exists; furthermore, the limit is independent of the approximating sequence of simple functions{sn}n=1.{\displaystyle \{s_{n}\}_{n=1}^{\infty }.} These remarks show that the integral is well-defined (i.e independent of any choices). It can be shown that a function is Bochner integrable if and only if it lies in theBochner spaceL1.{\displaystyle L^{1}.}

Properties

[edit]

Elementary properties

[edit]

Many of the familiar properties of the Lebesgue integral continue to hold for the Bochner integral. Particularly useful is Bochner's criterion for integrability, which states that if(X,Σ,μ){\displaystyle (X,\Sigma ,\mu )} is a measure space, then a Bochner-measurable functionf:XB{\displaystyle f\colon X\to B} is Bochner integrable if and only ifXfBdμ<.{\displaystyle \int _{X}\|f\|_{B}\,\mathrm {d} \mu <\infty .}

Here, a functionf:XB{\displaystyle f\colon X\to B} is calledBochner measurable if it is equalμ{\displaystyle \mu }-almost everywhere to a functiong{\displaystyle g} taking values in a separable subspaceB0{\displaystyle B_{0}} ofB{\displaystyle B}, and such that the inverse imageg1(U){\displaystyle g^{-1}(U)} of every open setU{\displaystyle U} inB{\displaystyle B} belongs toΣ{\displaystyle \Sigma }. Equivalently,f{\displaystyle f} is the limitμ{\displaystyle \mu }-almost everywhere of a sequence of countably-valued simple functions.

Linear operators

[edit]

IfT:BB{\displaystyle T\colon B\to B'} is a continuous linear operator between Banach spacesB{\displaystyle B} andB{\displaystyle B'}, andf:XB{\displaystyle f\colon X\to B} is Bochner integrable, then it is relatively straightforward to show thatTf:XB{\displaystyle Tf\colon X\to B'} is Bochner integrable and integration and the application ofT{\displaystyle T} may be interchanged:ETfdμ=TEfdμ{\displaystyle \int _{E}Tf\,\mathrm {d} \mu =T\int _{E}f\,\mathrm {d} \mu }for all measurable subsetsEΣ{\displaystyle E\in \Sigma }.

A non-trivially stronger form of this result, known asHille's theorem, also holds forclosed operators.[2] IfT:BB{\displaystyle T\colon B\to B'} is a closed linear operator between Banach spacesB{\displaystyle B} andB{\displaystyle B'} and bothf:XB{\displaystyle f\colon X\to B} andTf:XB{\displaystyle Tf\colon X\to B'} are Bochner integrable, thenETfdμ=TEfdμ{\displaystyle \int _{E}Tf\,\mathrm {d} \mu =T\int _{E}f\,\mathrm {d} \mu }for all measurable subsetsEΣ{\displaystyle E\in \Sigma }.

Dominated convergence theorem

[edit]

A version of thedominated convergence theorem also holds for the Bochner integral. Specifically, iffn:XB{\displaystyle f_{n}\colon X\to B} is a sequence of measurable functions on a complete measure space tending almost everywhere to a limit functionf{\displaystyle f}, and iffn(x)Bg(x){\displaystyle \|f_{n}(x)\|_{B}\leq g(x)}for almost everyxX{\displaystyle x\in X}, andgL1(μ){\displaystyle g\in L^{1}(\mu )}, thenEffnBdμ0{\displaystyle \int _{E}\|f-f_{n}\|_{B}\,\mathrm {d} \mu \to 0}asn{\displaystyle n\to \infty } andEfndμEfdμ{\displaystyle \int _{E}f_{n}\,\mathrm {d} \mu \to \int _{E}f\,\mathrm {d} \mu }for allEΣ{\displaystyle E\in \Sigma }.

Iff{\displaystyle f} is Bochner integrable, then the inequalityEfdμBEfBdμ{\displaystyle \left\|\int _{E}f\,\mathrm {d} \mu \right\|_{B}\leq \int _{E}\|f\|_{B}\,\mathrm {d} \mu }holds for allEΣ.{\displaystyle E\in \Sigma .} In particular, the set functionEEfdμ{\displaystyle E\mapsto \int _{E}f\,\mathrm {d} \mu }defines a countably-additiveB{\displaystyle B}-valuedvector measure onX{\displaystyle X} which isabsolutely continuous with respect toμ{\displaystyle \mu }.

Radon–Nikodym property

[edit]

An important fact about the Bochner integral is that theRadon–Nikodym theoremfails to hold in general, and instead is a property (theRadon–Nikodym property) defining an important class of ″nice″ Banach spaces.

Specifically, ifμ{\displaystyle \mu } is a measure on(X,Σ),{\displaystyle (X,\Sigma ),} thenB{\displaystyle B} has the Radon–Nikodym property with respect toμ{\displaystyle \mu } if, for every countably-additivevector measureγ{\displaystyle \gamma } on(X,Σ){\displaystyle (X,\Sigma )} with values inB{\displaystyle B} which hasbounded variation and is absolutely continuous with respect toμ,{\displaystyle \mu ,} there is aμ{\displaystyle \mu }-integrable functiong:XB{\displaystyle g:X\to B} such thatγ(E)=Egdμ{\displaystyle \gamma (E)=\int _{E}g\,d\mu }for every measurable setEΣ.{\displaystyle E\in \Sigma .}[3]

The Banach spaceB{\displaystyle B} has the Radon–Nikodym property ifB{\displaystyle B} has the Radon–Nikodym property with respect to every finite measure.[3] Equivalent formulations include:

It is known that the space1{\displaystyle \ell _{1}} has the Radon–Nikodym property, butc0{\displaystyle c_{0}} and the spacesL(Ω),{\displaystyle L^{\infty }(\Omega ),}L1(Ω),{\displaystyle L^{1}(\Omega ),} forΩ{\displaystyle \Omega } an open bounded subset ofRn,{\displaystyle \mathbb {R} ^{n},} andC(K),{\displaystyle C(K),} forK{\displaystyle K} an infinite compact space, do not.[6] Spaces with Radon–Nikodym property include separable dual spaces (this is theDunford–Pettis theorem)[citation needed] andreflexive spaces, which include, in particular,Hilbert spaces.[3]

Probability

[edit]

The Bochner integral is used inprobability theory for handling random variables and stochastic processes that take values in a Banach space. The classical convergence theorems—such as the dominated convergence theorem—when applied to the Bochner integral, generalize laws of large numbers and central limit theorems for sequences of Banach-space-valued random variables. Such integrals are central to the analysis of distributions in functional spaces and have applications in fields such asstochastic calculus,statistical field theory, andquantum field theory.

Let(Ω,F,P){\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )} be aprobability space, and consider a random variableX:ΩB{\displaystyle X\colon \Omega \to B} taking values in a Banach spaceB{\displaystyle B}. WhenX{\displaystyle X} is Bochner integrable, its expectation is defined byE[X]=ΩXdP,{\displaystyle E[X]=\int _{\Omega }X\,d\mathbb {P} ,}and inherits the usual linearity and continuity properties of the classical expectation.

Stochastic process

[edit]

Consider(Xt)tT{\displaystyle (X_{t})_{t\in T}}, astochastic process that is Banach-space-valued. The Bochner integral allows us to define the mean functionμ(t)=E[Xt]=ΩXtdP{\displaystyle \mu (t)=E[X_{t}]=\int _{\Omega }X_{t}\,d\mathbb {P} } whenever eachXt{\displaystyle X_{t}} is Bochner integrable. This approach is useful in stochastic partial differential equations, where eachXt{\displaystyle X_{t}} is a random element in a functional space.

Inmartingale theory, a sequence(Mn)n1{\displaystyle (M_{n})_{n\geq 1}} ofB{\displaystyle B}-valued random variables is called amartingale with respect to afiltration(Fn)n1{\displaystyle ({\mathcal {F}}_{n})_{n\geq 1}} if eachMn{\displaystyle M_{n}} isFn{\displaystyle {\mathcal {F}}_{n}}-measurable and Bochner integrable, and satisfiesE[Mn+1Fn]=Mn.{\displaystyle E[M_{n+1}\mid {\mathcal {F}}_{n}]=M_{n}.}The Bochner integral ensures that conditional expectations are well-defined in this Banach space setting.

Gaussian measure

[edit]

The Bochner integral allows one to define moments for theGaussian measure on a Banach space. If the Bochner integral exists, then it is equivalent to thePettis integralη{\displaystyle \eta } defined byη,b=Bx,bdμ(x),{\displaystyle \langle \eta ,b^{*}\rangle =\int _{B}\langle x,b^{*}\rangle \,d\mu (x),}wherebB{\displaystyle b^{*}\in B^{*}} and,{\displaystyle \langle \cdot ,\cdot \rangle } denotes thedual pairing.

Extension to locally convex spaces

[edit]

There are several extensions of the Bochner integral to functionsf:XE{\displaystyle f\colon X\to E} with values in somelocally convex spaceE{\displaystyle E} (1975 Rybakov,[7] 1981 Blondia,[8] 2015 Beckmann and Deitmar[9]). The extension by Beckmann and Deitmar uses the original approach of Bochner but generalized tonets and they distinguish three cases of assumptions on the locally convex space:[10]

Beckmann and Deitmar use the term ofBochner-approximability as a condition for defining the Bochner integral. A function is Bochner-approximable if there exists a net(sj)jJ{\displaystyle (s_{j})_{j\in J}} of simple functions such that for every continuous seminormp{\displaystyle p} onE{\displaystyle E}

Xp(fsj)dμ0{\displaystyle \int _{X}p(f-s_{j})d\mu \to 0}

They provide several equivalent characterizations of this property.

Blondia defines the extensions to locally convex spaces as follows[11]

Let(X,Σ,μ){\displaystyle (X,\Sigma ,\mu )} beσ{\displaystyle \sigma }-finite, complete measure space and(E,P){\displaystyle (E,{\mathcal {P}})} a complete Hausdorff locally convex space whose topology is induced by the family of seminormsP{\displaystyle {\mathcal {P}}}. A functionf:XE{\displaystyle f\colon X\to E} is called Bochner integrable or strong integrable if there exists a sequence(fn){\displaystyle (f_{n})} such that

limnXp(f(ω)fn(ω))dμ=0.{\displaystyle \lim \limits _{n\to \infty }\int _{X}p(f(\omega )-f_{n}(\omega ))d\mu =0.}

See also

[edit]

References

[edit]
  1. ^Ardent, Wolfgang; Batty, Charles J.K; Hieber, Matthias; Neubrander, Frank (2001).Vector-Valued Laplace Transforms and Cauchy Problems. Birkhauser.ISBN 3764365498.
  2. ^Diestel, Joseph; Uhl, Jr., John Jerry (1977).Vector Measures. Mathematical Surveys. Vol. 15. American Mathematical Society.doi:10.1090/surv/015.ISBN 978-0-8218-1515-1. (See Theorem II.2.6)
  3. ^abcBárcenas, Diómedes (2003)."The Radon–Nikodym Theorem for Reflexive Banach Spaces"(PDF).Divulgaciones Matemáticas.11 (1): 55–59 [pp. 55–56].
  4. ^abBourgin 1983, pp. 31, 33. Thm. 2.3.6-7, conditions (1,4,10).
  5. ^Bourgin 1983, p. 16. "Early workers in this field were concerned with the Banach space property that eachX-valued function of bounded variation on[0,1] be differentiable almost surely. It turns out that this property (known as the Gelfand-Fréchet property) is also equivalent to the RNP [Radon-Nikodym Property]."
  6. ^Bourgin 1983, p. 14.
  7. ^Vyacheslav I. Rybakov (1975). "A generalization of the Bochner integral to locally convex spaces".Mathematical Notes of the Academy of Sciences of the USSR.18:933–938.doi:10.1007/BF01153047.
  8. ^Chris Blondia (1981). "Integration in locally convex spaces".Simon Stevin, A Quarterly Journal of Pure and Applied Mathematics.55 (3):81–102.
  9. ^Ralf Beckmann and Anton Deitmar (2015)."Two applications of nets".Ann. Funct. Anal.6 (3):176–190.doi:10.15352/afa/06-3-15.
  10. ^Ralf Beckmann and Anton Deitmar (2015)."Two applications of nets".Ann. Funct. Anal.6 (3): 183.doi:10.15352/afa/06-3-15.
  11. ^Marraffa, Valeria (2006)."A Birkhoff Type Integral and the Bourgain Property in a Locally Convex Space".Real Analysis Exchange.32 (2). Michigan State University Press: 410.
Types of
integrals
Integration
techniques
Improper integrals
Stochastic integrals
Miscellaneous
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Derivatives
Measurability
Integrals
Results
Related
Functional calculus
Applications
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bochner_integral&oldid=1322283307"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp