Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel

      From cppreference.com
      <cpp‎ |numeric‎ |special functions
       
       
       
       
      Defined in header<cmath>
      (1)
      float       assoc_legendre(unsignedint n,unsignedint m,float x);

      double      assoc_legendre(unsignedint n,unsignedint m,double x);

      longdouble assoc_legendre(unsignedint n,unsignedint m,longdouble x);
      (since C++17)
      (until C++23)
      /* floating-point-type */ assoc_legendre(unsignedint n,unsignedint m,
                                               /* floating-point-type */ x);
      (since C++23)
      float       assoc_legendref(unsignedint n,unsignedint m,float x);
      (2)(since C++17)
      longdouble assoc_legendrel(unsignedint n,unsignedint m,longdouble x);
      (3)(since C++17)
      Defined in header<cmath>
      template<class Integer>
      double      assoc_legendre(unsignedint n,unsignedint m, Integer x);
      (A)(since C++17)
      1-3) Computes theAssociated Legendre polynomials of the degreen, orderm, and argumentx. The library provides overloads ofstd::assoc_legendre for all cv-unqualified floating-point types as the type of the parameterx.(since C++23)
      A) Additional overloads are provided for all integer types, which are treated asdouble.

      Contents

      [edit]Parameters

      n - the degree of the polynomial, an unsigned integer value
      m - the order of the polynomial, an unsigned integer value
      x - the argument, a floating-point or integer value

      [edit]Return value

      If no errors occur, value of the associated Legendre polynomial\(\mathsf{P}_n^m\)Pm
      n
      ofx, that is\((1 - x^2) ^ {m/2} \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \, \mathsf{P}_n(x)\)(1-x2
      )m/2
      dm
      dxm
      Pn(x)
      , is returned (where\(\mathsf{P}_n(x)\)Pn(x) is the unassociated Legendre polynomial,std::legendre(n, x)).

      Note that theCondon-Shortley phase term\((-1)^m\)(-1)m
      is omitted from this definition.

      [edit]Error handling

      Errors may be reported as specified inmath_errhandling

      • If the argument is NaN, NaN is returned and domain error is not reported
      • If|x| > 1, a domain error may occur
      • Ifn is greater or equal to 128, the behavior is implementation-defined

      [edit]Notes

      Implementations that do not support C++17, but supportISO 29124:2010, provide this function if__STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines__STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

      Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the headertr1/cmath and namespacestd::tr1.

      An implementation of this function is alsoavailable in boost.math asboost::math::legendre_p, except that the boost.math definition includes the Condon-Shortley phase term.

      The first few associated Legendre polynomials are:

      Function Polynomial
          assoc_legendre(0,0, x)     1
      assoc_legendre(1,0, x)x
      assoc_legendre(1,1, x)(1 - x2
      )1/2
      assoc_legendre(2,0, x)
      1
      2
      (3x2
      - 1)
      assoc_legendre(2,1, x)     3x(1 - x2
      )1/2
          
      assoc_legendre(2,2, x)3(1 - x2
      )

      The additional overloads are not required to be provided exactly as(A). They only need to be sufficient to ensure that for their argumentnum of integer type,std::assoc_legendre(int_num1, int_num2, num) has the same effect asstd::assoc_legendre(int_num1, int_num2,static_cast<double>(num)).

      [edit]Example

      Run this code
      #include <cmath>#include <iostream> double P20(double x){return0.5*(3* x* x-1);} double P21(double x){return3.0* x*std::sqrt(1- x* x);} double P22(double x){return3*(1- x* x);} int main(){// spot-checksstd::cout<< std::assoc_legendre(2,0,0.5)<<'='<< P20(0.5)<<'\n'<< std::assoc_legendre(2,1,0.5)<<'='<< P21(0.5)<<'\n'<< std::assoc_legendre(2,2,0.5)<<'='<< P22(0.5)<<'\n';}

      Output:

      -0.125=-0.1251.29904=1.299042.25=2.25

      [edit]See also

      (C++17)(C++17)(C++17)
      Legendre polynomials
      (function)[edit]

      [edit]External links

      Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld — A Wolfram Web Resource.
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/numeric/special_functions/assoc_legendre&oldid=149536"

      [8]ページ先頭

      ©2009-2025 Movatter.jp