Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      std::cauchy_distribution

      From cppreference.com
      <cpp‎ |numeric‎ |random
       
       
       
      Pseudo-random number generation
       
       
      Defined in header<random>
      template<class RealType=double>
      class cauchy_distribution;
      (since C++11)

      Produces random numbers according to aCauchy distribution (also called Lorentz distribution):

      \({\small f(x;a,b)={(b\pi{[1+{(\frac{x-a}{b})}^{2}]} })}^{-1}\)f(x; a,b) =



      1 +

      x - a
      b


      2




      -1

      std::cauchy_distribution satisfies all requirements ofRandomNumberDistribution.

      Contents

      [edit]Template parameters

      RealType - The result type generated by the generator. The effect is undefined if this is not one offloat,double, orlongdouble.

      [edit]Member types

      Member type Definition
      result_type(C++11)RealType
      param_type(C++11) the type of the parameter set, seeRandomNumberDistribution.

      [edit]Member functions

      constructs new distribution
      (public member function)[edit]
      (C++11)
      resets the internal state of the distribution
      (public member function)[edit]
      Generation
      (C++11)
      generates the next random number in the distribution
      (public member function)[edit]
      Characteristics
      (C++11)
      returns the distribution parameters
      (public member function)[edit]
      (C++11)
      gets or sets the distribution parameter object
      (public member function)[edit]
      (C++11)
      returns the minimum potentially generated value
      (public member function)[edit]
      (C++11)
      returns the maximum potentially generated value
      (public member function)[edit]

      [edit]Non-member functions

      (C++11)(C++11)(removed in C++20)
      compares two distribution objects
      (function)[edit]
      performs stream input and output on pseudo-random number distribution
      (function template)[edit]

      [edit]Example

      Run this code
      #include <algorithm>#include <cmath>#include <iomanip>#include <iostream>#include <map>#include <random>#include <vector> template<int Height=5,int BarWidth=1,int Padding=1,int Offset=0,class Seq>void draw_vbars(Seq&& s,constbool DrawMinMax=true){    static_assert(0< Height and0< BarWidth and0<= Padding and0<= Offset); auto cout_n=[](auto&& v,int n=1){while(n-->0)std::cout<< v;}; constauto[min, max]=std::minmax_element(std::cbegin(s),std::cend(s)); std::vector<std::div_t> qr;for(typedef decltype(*std::cbegin(s)) V; V e: s)        qr.push_back(std::div(std::lerp(V(0),8* Height,(e-*min)/(*max-*min)),8)); for(auto h{Height}; h-->0; cout_n('\n')){        cout_n(' ', Offset); for(auto dv: qr){constauto q{dv.quot}, r{dv.rem};unsignedchar d[]{0xe2,0x96,0x88,0};// Full Block: '█'            q< h? d[0]=' ', d[1]=0: q== h? d[2]-=(7- r):0;            cout_n(d, BarWidth), cout_n(' ', Padding);} if(DrawMinMax&& Height>1)            Height-1== h?std::cout<<"┬ "<<*max:                          h?std::cout<<"│ ":std::cout<<"┴ "<<*min;}} int main(){std::random_device rd{};std::mt19937 gen{rd()}; auto cauchy=[&gen](constfloat x0,constfloat 𝛾){        std::cauchy_distribution<float> d{x0/* a */, 𝛾/* b */}; constint norm=1'00'00;constfloat cutoff=0.005f; std::map<int,int> hist{};for(int n=0; n!= norm;++n)++hist[std::round(d(gen))]; std::vector<float> bars;std::vector<int> indices;for(autoconst&[n, p]: hist)if(float x= p*(1.0/ norm); cutoff< x){                bars.push_back(x);                indices.push_back(n);} std::cout<<"x₀ = "<< x0<<", 𝛾 = "<< 𝛾<<":\n";        draw_vbars<4,3>(bars);for(int n: indices)std::cout<<std::setw(2)<< n<<"  ";std::cout<<"\n\n";};     cauchy(/* x₀ = */-2.0f,/* 𝛾 = */0.50f);    cauchy(/* x₀ = */+0.0f,/* 𝛾 = */1.25f);}

      Possible output:

      x₀ = -2, 𝛾 = 0.5:                    ███                     ┬ 0.5006                    ███                     │                ▂▂▂ ███ ▁▁▁                 │▁▁▁ ▁▁▁ ▁▁▁ ▃▃▃ ███ ███ ███ ▂▂▂ ▁▁▁ ▁▁▁ ▁▁▁ ┴ 0.0076-7  -6  -5  -4  -3  -2  -1   0   1   2   3 x₀ = 0, 𝛾 = 1.25:                                ███                                 ┬ 0.2539                            ▅▅▅ ███ ▃▃▃                             │                        ▁▁▁ ███ ███ ███ ▁▁▁                         │▁▁▁ ▁▁▁ ▁▁▁ ▁▁▁ ▃▃▃ ▅▅▅ ███ ███ ███ ███ ███ ▅▅▅ ▃▃▃ ▂▂▂ ▁▁▁ ▁▁▁ ▁▁▁ ┴ 0.0058-8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   9

      [edit]External links

      Weisstein, Eric W. "Cauchy Distribution." From MathWorld — A Wolfram Web Resource.
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/numeric/random/cauchy_distribution&oldid=178567"

      [8]ページ先頭

      ©2009-2025 Movatter.jp