Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      std::expm1,std::expm1f,std::expm1l

      From cppreference.com
      <cpp‎ |numeric‎ |math
       
       
       
      Common mathematical functions
      Nearest integer floating point operations
      (C++11)(C++11)(C++11)
      (C++11)
      (C++11)
      (C++11)(C++11)(C++11)
      Floating point manipulation functions
      (C++11)(C++11)
      (C++11)
      (C++11)
      Classification and comparison
      (C++11)
      (C++11)
      (C++11)
      (C++11)
      (C++11)
      (C++11)
      Types
      (C++11)
      (C++11)
      (C++11)
      Macro constants
       
      Defined in header<cmath>
      (1)
      float       expm1(float num);

      double      expm1(double num);

      longdouble expm1(longdouble num);
      (until C++23)
      /*floating-point-type*/
                  expm1(/*floating-point-type*/ num);
      (since C++23)
      (constexpr since C++26)
      float       expm1f(float num);
      (2)(since C++11)
      (constexpr since C++26)
      longdouble expm1l(longdouble num);
      (3)(since C++11)
      (constexpr since C++26)
      SIMD overload(since C++26)
      Defined in header<simd>
      template</*math-floating-point*/ V>

      constexpr/*deduced-simd-t*/<V>

                  expm1(const V& v_num);
      (S)(since C++26)
      Defined in header<cmath>
      template<class Integer>
      double      expm1( Integer num);
      (A)(constexpr since C++26)
      1-3) Computes thee (Euler's number,2.7182818...) raised to the given powernum, minus1.0. This function is more accurate than the expressionstd::exp(num)-1.0 ifnum is close to zero. The library provides overloads ofstd::expm1 for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
      S) The SIMD overload performs an element-wisestd::expm1 onv_num.
      (Seemath-floating-point anddeduced-simd-t for their definitions.)
      (since C++26)
      A) Additional overloads are provided for all integer types, which are treated asdouble.
      (since C++11)

      Contents

      [edit]Parameters

      num - floating-point or integer value

      [edit]Return value

      If no errors occurenum
      -1
      is returned.

      If a range error due to overflow occurs,+HUGE_VAL,+HUGE_VALF, or+HUGE_VALL is returned.

      If a range error occurs due to underflow, the correct result (after rounding) is returned.

      [edit]Error handling

      Errors are reported as specified inmath_errhandling.

      If the implementation supports IEEE floating-point arithmetic (IEC 60559),

      • If the argument is ±0, it is returned, unmodified.
      • If the argument is -∞, -1 is returned.
      • If the argument is +∞, +∞ is returned.
      • If the argument is NaN, NaN is returned.

      [edit]Notes

      The functionsstd::expm1 andstd::log1p are useful for financial calculations, for example, when calculating small daily interest rates:(1+x)n
      -1
      can be expressed asstd::expm1(n*std::log1p(x)). These functions also simplify writing accurate inverse hyperbolic functions.

      For IEEE-compatible typedouble, overflow is guaranteed if709.8 < num.

      The additional overloads are not required to be provided exactly as(A). They only need to be sufficient to ensure that for their argumentnum of integer type,std::expm1(num) has the same effect asstd::expm1(static_cast<double>(num)).

      [edit]Example

      Run this code
      #include <cerrno>#include <cfenv>#include <cmath>#include <cstring>#include <iostream>// #pragma STDC FENV_ACCESS ON int main(){std::cout<<"expm1(1) = "<< std::expm1(1)<<'\n'<<"Interest earned in 2 days on $100, compounded daily at 1%\n"<<"    on a 30/360 calendar = "<<100* std::expm1(2*std::log1p(0.01/360))<<'\n'<<"exp(1e-16)-1 = "<<std::exp(1e-16)-1<<", but expm1(1e-16) = "<< std::expm1(1e-16)<<'\n'; // special valuesstd::cout<<"expm1(-0) = "<< std::expm1(-0.0)<<'\n'<<"expm1(-Inf) = "<< std::expm1(-INFINITY)<<'\n'; // error handlingerrno=0;std::feclearexcept(FE_ALL_EXCEPT); std::cout<<"expm1(710) = "<< std::expm1(710)<<'\n'; if(errno==ERANGE)std::cout<<"    errno == ERANGE: "<<std::strerror(errno)<<'\n';if(std::fetestexcept(FE_OVERFLOW))std::cout<<"    FE_OVERFLOW raised\n";}

      Possible output:

      expm1(1) = 1.71828Interest earned in 2 days on $100, compounded daily at 1%    on a 30/360 calendar = 0.00555563exp(1e-16)-1 = 0, but expm1(1e-16) = 1e-16expm1(-0) = -0expm1(-Inf) = -1expm1(710) = inf    errno == ERANGE: Result too large    FE_OVERFLOW raised

      [edit]See also

      (C++11)(C++11)
      returnse raised to the given power (\({\small e^x}\)ex)
      (function)[edit]
      (C++11)(C++11)(C++11)
      returns2 raised to the given power (\({\small 2^x}\)2x)
      (function)[edit]
      (C++11)(C++11)(C++11)
      natural logarithm (to basee) of1 plus the given number (\({\small\ln{(1+x)}}\)ln(1+x))
      (function)[edit]
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/numeric/math/expm1&oldid=180292"

      [8]ページ先頭

      ©2009-2025 Movatter.jp