Common mathematical functions | |||||||||||||||||||||||||||||||
Mathematical special functions(C++17) | |||||||||||||||||||||||||||||||
Mathematical constants(C++20) | |||||||||||||||||||||||||||||||
Basic linear algebra algorithms(C++26) | |||||||||||||||||||||||||||||||
Data-parallel types (SIMD)(C++26) | |||||||||||||||||||||||||||||||
Floating-point environment(C++11) | |||||||||||||||||||||||||||||||
Complex numbers | |||||||||||||||||||||||||||||||
Numeric array (valarray ) | |||||||||||||||||||||||||||||||
Pseudo-random number generation | |||||||||||||||||||||||||||||||
Bit manipulation(C++20) | |||||||||||||||||||||||||||||||
Saturation arithmetic(C++26) | |||||||||||||||||||||||||||||||
Factor operations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Interpolations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Generic numeric operations | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
C-style checked integer arithmetic | |||||||||||||||||||||||||||||||
|
Defined in header <complex> | ||
template<class T> complex<T> acos(const complex<T>& z); | (since C++11) | |
Computes complex arc cosine of a complex valuez. Branch cuts exist outside the interval[−1, +1] along the real axis.
Contents |
z | - | complex value |
If no errors occur, complex arc cosine ofz is returned, in the range of a strip unbounded along the imaginary axis and in the interval[0, +π] along the real axis.
Errors are reported consistent withmath_errhandling.
If the implementation supports IEEE floating-point arithmetic,
(±0,+0)
, the result is(π/2,-0)
(±0,NaN)
, the result is(π/2,NaN)
(x,+∞)
(for any finite x), the result is(π/2,-∞)
(x,NaN)
(for any nonzero finite x), the result is(NaN,NaN)
andFE_INVALID may be raised.(-∞,y)
(for any positive finite y), the result is(π,-∞)
(+∞,y)
(for any positive finite y), the result is(+0,-∞)
(-∞,+∞)
, the result is(3π/4,-∞)
(+∞,+∞)
, the result is(π/4,-∞)
(±∞,NaN)
, the result is(NaN,±∞)
(the sign of the imaginary part is unspecified)(NaN,y)
(for any finite y), the result is(NaN,NaN)
andFE_INVALID may be raised(NaN,+∞)
, the result is(NaN,-∞)
(NaN,NaN)
, the result is(NaN,NaN)
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments(-∞,-1) and(1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine isacos z =1 |
2 |
For anyz,acos(z) = π - acos(-z).
#include <cmath>#include <complex>#include <iostream> int main(){std::cout<<std::fixed;std::complex<double> z1(-2.0,0.0);std::cout<<"acos"<< z1<<" = "<<std::acos(z1)<<'\n'; std::complex<double> z2(-2.0,-0.0);std::cout<<"acos"<< z2<<" (the other side of the cut) = "<<std::acos(z2)<<'\n'; // for any z, acos(z) = pi - acos(-z)constdouble pi=std::acos(-1);std::complex<double> z3= pi-std::acos(z2);std::cout<<"cos(pi - acos"<< z2<<") = "<<std::cos(z3)<<'\n';}
Output:
acos(-2.000000,0.000000) = (3.141593,-1.316958)acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958)cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
(C++11) | computes arc sine of a complex number (\({\small\arcsin{z}}\)arcsin(z)) (function template)[edit] |
(C++11) | computes arc tangent of a complex number (\({\small\arctan{z}}\)arctan(z)) (function template)[edit] |
computes cosine of a complex number (\({\small\cos{z}}\)cos(z)) (function template)[edit] | |
(C++11)(C++11) | computes arc cosine (\({\small\arccos{x}}\)arccos(x)) (function)[edit] |
applies the functionstd::acos to each element of valarray (function template)[edit] | |
C documentation forcacos |