Common mathematical functions | |||||||||||||||||||||||||||||||
Mathematical special functions(C++17) | |||||||||||||||||||||||||||||||
Mathematical constants(C++20) | |||||||||||||||||||||||||||||||
Basic linear algebra algorithms(C++26) | |||||||||||||||||||||||||||||||
Data-parallel types (SIMD)(C++26) | |||||||||||||||||||||||||||||||
Floating-point environment(C++11) | |||||||||||||||||||||||||||||||
Complex numbers | |||||||||||||||||||||||||||||||
Numeric array (valarray ) | |||||||||||||||||||||||||||||||
Pseudo-random number generation | |||||||||||||||||||||||||||||||
Bit manipulation(C++20) | |||||||||||||||||||||||||||||||
Saturation arithmetic(C++26) | |||||||||||||||||||||||||||||||
Factor operations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Interpolations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Generic numeric operations | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
C-style checked integer arithmetic | |||||||||||||||||||||||||||||||
|
Defined in header <cmath> | ||
(1) | ||
float beta(float x,float y); double beta(double x,double y); | (since C++17) (until C++23) | |
/* floating-point-type */ beta(/* floating-point-type */ x, /* floating-point-type */ y); | (since C++23) | |
float betaf(float x,float y); | (2) | (since C++17) |
longdouble betal(longdouble x,longdouble y); | (3) | (since C++17) |
Defined in header <cmath> | ||
template<class Arithmetic1,class Arithmetic2> /* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y); | (A) | (since C++17) |
std::beta
for all cv-unqualified floating-point types as the type of the parametersx andy.(since C++23)Contents |
x, y | - | floating-point or integer values |
Γ(x)Γ(y) |
Γ(x+y) |
Errors may be reported as specified inmath_errhandling.
Implementations that do not support C++17, but supportISO 29124:2010, provide this function if__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the headertr1/cmath
and namespacestd::tr1
.
An implementation of this function is alsoavailable in boost.math.
std::beta(x, y) equalsstd::beta(y, x).
Whenx andy are positive integers,std::beta(x, y) equals\(\frac{(x-1)!(y-1)!}{(x+y-1)!}\)(x-1)!(y-1)! |
(x+y-1)! |
1 |
(n+1)Β(n-k+1,k+1) |
The additional overloads are not required to be provided exactly as(A). They only need to be sufficient to ensure that for their first argumentnum1 and second argumentnum2:
| (until C++23) |
Ifnum1 andnum2 have arithmetic types, thenstd::beta(num1, num2) has the same effect asstd::beta(static_cast</* common-floating-point-type */>(num1), If no such floating-point type with the greatest rank and subrank exists, thenoverload resolution does not result in a usable candidate from the overloads provided. | (since C++23) |
#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <numbers>#include <string> long binom_via_beta(int n,int k){returnstd::lround(1/((n+1)* std::beta(n- k+1, k+1)));} long binom_via_gamma(int n,int k){returnstd::lround(std::tgamma(n+1)/(std::tgamma(n- k+1)*std::tgamma(k+1)));} int main(){std::cout<<"Pascal's triangle:\n";for(int n=1; n<10;++n){std::cout<<std::string(20- n*2,' ');for(int k=1; k< n;++k){std::cout<<std::setw(3)<< binom_via_beta(n, k)<<' ';assert(binom_via_beta(n, k)== binom_via_gamma(n, k));}std::cout<<'\n';} // A spot-checkconstlongdouble p=0.123;// a random value in [0, 1]constlongdouble q=1- p;constlongdouble π=std::numbers::pi_v<longdouble>;std::cout<<"\n\n"<<std::setprecision(19)<<"β(p,1-p) = "<< std::beta(p, q)<<'\n'<<"π/sin(π*p) = "<< π/std::sin(π* p)<<'\n';}
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9 β(p,1-p) = 8.335989149587307836π/sin(π*p) = 8.335989149587307834
(C++11)(C++11)(C++11) | gamma function (function)[edit] |
Weisstein, Eric W. "Beta Function." From MathWorld — A Wolfram Web Resource. |