Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      std::acosh(std::complex)

      From cppreference.com
      <cpp‎ |numeric‎ |complex
       
       
       
       
      Defined in header<complex>
      template<class T>
      complex<T> acosh(const complex<T>& z);
      (since C++11)

      Computes complex arc hyperbolic cosine of a complex valuez with branch cut at values less than 1 along the real axis.

      Contents

      [edit]Parameters

      z - complex value

      [edit]Return value

      If no errors occur, the complex arc hyperbolic cosine ofz is returned, in the range of a half-strip of nonnegative values along the real axis and in the interval[−iπ; +iπ] along the imaginary axis.

      [edit]Error handling and special values

      Errors are reported consistent withmath_errhandling.

      If the implementation supports IEEE floating-point arithmetic,

      • std::acosh(std::conj(z))==std::conj(std::acosh(z)).
      • Ifz is(±0,+0), the result is(+0,π/2).
      • Ifz is(x,+∞) (for any finite x), the result is(+∞,π/2).
      • Ifz is(x,NaN) (for any[1] finite x), the result is(NaN,NaN) andFE_INVALID may be raised.
      • Ifz is(-∞,y) (for any positive finite y), the result is(+∞,π).
      • Ifz is(+∞,y) (for any positive finite y), the result is(+∞,+0).
      • Ifz is(-∞,+∞), the result is(+∞,3π/4).
      • Ifz is(±∞,NaN), the result is(+∞,NaN).
      • Ifz is(NaN,y) (for any finite y), the result is(NaN,NaN) andFE_INVALID may be raised.
      • Ifz is(NaN,+∞), the result is(+∞,NaN).
      • Ifz is(NaN,NaN), the result is(NaN,NaN).
      1. perC11 DR471, this holds for non-zero x only. Ifz is(0,NaN), the result should be(NaN,π/2).

      [edit]Notes

      Although the C++ standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".

      Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment(-∞,+1) of the real axis.

      The mathematical definition of the principal value of the inverse hyperbolic cosine isacosh z = ln(z +z+1z-1).

      For anyz,acosh(z) =
      z-1
      1-z
      acos(z)
      , or simplyi acos(z) in the upper half of the complex plane.

      [edit]Example

      Run this code
      #include <complex>#include <iostream> int main(){std::cout<<std::fixed;std::complex<double> z1(0.5,0);std::cout<<"acosh"<< z1<<" = "<<std::acosh(z1)<<'\n'; std::complex<double> z2(0.5,-0.0);std::cout<<"acosh"<< z2<<" (the other side of the cut) = "<<std::acosh(z2)<<'\n'; // in upper half-plane, acosh = i acosstd::complex<double> z3(1,1), i(0,1);std::cout<<"acosh"<< z3<<" = "<<std::acosh(z3)<<'\n'<<"i*acos"<< z3<<" = "<< i*std::acos(z3)<<'\n';}

      Output:

      acosh(0.500000,0.000000) = (0.000000,-1.047198)acosh(0.500000,-0.000000) (the other side of the cut) = (0.000000,1.047198)acosh(1.000000,1.000000) = (1.061275,0.904557)i*acos(1.000000,1.000000) = (1.061275,0.904557)

      [edit]See also

      computes arc cosine of a complex number (\({\small\arccos{z}}\)arccos(z))
      (function template)[edit]
      computes area hyperbolic sine of a complex number (\({\small\operatorname{arsinh}{z}}\)arsinh(z))
      (function template)[edit]
      computes area hyperbolic tangent of a complex number (\({\small\operatorname{artanh}{z}}\)artanh(z))
      (function template)[edit]
      computes hyperbolic cosine of a complex number (\({\small\cosh{z}}\)cosh(z))
      (function template)[edit]
      (C++11)(C++11)(C++11)
      computes the inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x}}\)arcosh(x))
      (function)[edit]
      C documentation forcacosh
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/numeric/complex/acosh&oldid=159322"

      [8]ページ先頭

      ©2009-2025 Movatter.jp