Common mathematical functions | |||||||||||||||||||||||||||||||
Mathematical special functions(C++17) | |||||||||||||||||||||||||||||||
Mathematical constants(C++20) | |||||||||||||||||||||||||||||||
Basic linear algebra algorithms(C++26) | |||||||||||||||||||||||||||||||
Data-parallel types (SIMD)(C++26) | |||||||||||||||||||||||||||||||
Floating-point environment(C++11) | |||||||||||||||||||||||||||||||
Complex numbers | |||||||||||||||||||||||||||||||
Numeric array (valarray ) | |||||||||||||||||||||||||||||||
Pseudo-random number generation | |||||||||||||||||||||||||||||||
Bit manipulation(C++20) | |||||||||||||||||||||||||||||||
Saturation arithmetic(C++26) | |||||||||||||||||||||||||||||||
Factor operations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Interpolations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Generic numeric operations | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
C-style checked integer arithmetic | |||||||||||||||||||||||||||||||
|
Defined in header <complex> | ||
template<class T> complex<T> acosh(const complex<T>& z); | (since C++11) | |
Computes complex arc hyperbolic cosine of a complex valuez with branch cut at values less than 1 along the real axis.
Contents |
z | - | complex value |
If no errors occur, the complex arc hyperbolic cosine ofz is returned, in the range of a half-strip of nonnegative values along the real axis and in the interval[−iπ; +iπ] along the imaginary axis.
Errors are reported consistent withmath_errhandling.
If the implementation supports IEEE floating-point arithmetic,
(±0,+0)
, the result is(+0,π/2)
.(x,+∞)
(for any finite x), the result is(+∞,π/2)
.(x,NaN)
(for any[1] finite x), the result is(NaN,NaN)
andFE_INVALID may be raised.(-∞,y)
(for any positive finite y), the result is(+∞,π)
.(+∞,y)
(for any positive finite y), the result is(+∞,+0)
.(-∞,+∞)
, the result is(+∞,3π/4)
.(±∞,NaN)
, the result is(+∞,NaN)
.(NaN,y)
(for any finite y), the result is(NaN,NaN)
andFE_INVALID may be raised.(NaN,+∞)
, the result is(+∞,NaN)
.(NaN,NaN)
, the result is(NaN,NaN)
.Although the C++ standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment(-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine isacosh z = ln(z +√z+1√z-1).
For anyz,acosh(z) =√z-1 |
√1-z |
#include <complex>#include <iostream> int main(){std::cout<<std::fixed;std::complex<double> z1(0.5,0);std::cout<<"acosh"<< z1<<" = "<<std::acosh(z1)<<'\n'; std::complex<double> z2(0.5,-0.0);std::cout<<"acosh"<< z2<<" (the other side of the cut) = "<<std::acosh(z2)<<'\n'; // in upper half-plane, acosh = i acosstd::complex<double> z3(1,1), i(0,1);std::cout<<"acosh"<< z3<<" = "<<std::acosh(z3)<<'\n'<<"i*acos"<< z3<<" = "<< i*std::acos(z3)<<'\n';}
Output:
acosh(0.500000,0.000000) = (0.000000,-1.047198)acosh(0.500000,-0.000000) (the other side of the cut) = (0.000000,1.047198)acosh(1.000000,1.000000) = (1.061275,0.904557)i*acos(1.000000,1.000000) = (1.061275,0.904557)
(C++11) | computes arc cosine of a complex number (\({\small\arccos{z}}\)arccos(z)) (function template)[edit] |
(C++11) | computes area hyperbolic sine of a complex number (\({\small\operatorname{arsinh}{z}}\)arsinh(z)) (function template)[edit] |
(C++11) | computes area hyperbolic tangent of a complex number (\({\small\operatorname{artanh}{z}}\)artanh(z)) (function template)[edit] |
computes hyperbolic cosine of a complex number (\({\small\cosh{z}}\)cosh(z)) (function template)[edit] | |
(C++11)(C++11)(C++11) | computes the inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x}}\)arcosh(x)) (function)[edit] |
C documentation forcacosh |