Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      hypot, hypotf, hypotl

      From cppreference.com
      <c‎ |numeric‎ |math
       
       
       
      Common mathematical functions
      Functions
      Basic operations
      (C99)
      (C99)
      (C99)
      (C99)(C99)(C99)(C23)
      Maximum/minimum operations
      (C99)
      (C99)
      Exponential functions
      (C23)
      (C99)
      (C99)
      (C23)
      (C23)

      (C99)
      (C99)(C23)
      (C23)
      (C23)
      Power functions
      (C99)
      (C23)
      (C23)

      hypot
      (C99)
      (C23)
      (C23)
      Trigonometric and hyperbolic functions
      (C23)
      (C23)
      (C23)
      (C23)
      (C99)
      (C99)
      (C99)
      Nearest integer floating-point
      (C99)(C99)(C99)
      (C23)(C23)(C23)(C23)
      Floating-point manipulation
      (C99)(C99)
      (C99)(C23)
      (C99)
      Narrowing operations
      (C23)
      (C23)
      (C23)
      (C23)
      (C23)
      (C23)
      Quantum and quantum exponent
      Decimal re-encoding functions
      Total order and payload functions
      Classification
      Error and gamma functions
      (C99)
      (C99)
      (C99)
      (C99)
      Types
      Macro constants
      Special floating-point values
      (C99)(C23)
      Arguments and return values
      Error handling
      Fast operation indicators
       
      Defined in header<math.h>
      float       hypotf(float x,float y);
      (1)(since C99)
      double      hypot(double x,double y);
      (2)(since C99)
      longdouble hypotl(longdouble x,longdouble y);
      (3)(since C99)
      Defined in header<tgmath.h>
      #define hypot( x, y )
      (4)(since C99)
      1-3) Computes the square root of the sum of the squares ofx andy, without undue overflow or underflow at intermediate stages of the computation.
      4) Type-generic macro: If any argument has typelongdouble, the long double version of the function is called. Otherwise, if any argument has integer type or has typedouble, the double version of the function is called. Otherwise, thefloat version of the function is called.

      The value computed by this function is the length of the hypotenuse of a right-angled triangle with sides of lengthx andy, or the distance of the point(x, y) from the origin(0,0), or the magnitude of a complex numberx+iy.

      Contents

      [edit]Parameters

      x - floating-point value
      y - floating-point value

      [edit]Return value

      If no errors occur, the hypotenuse of a right-angled triangle,\(\scriptsize{\sqrt{x^2+y^2} }\)x2
      +y2
      , is returned.

      If a range error due to overflow occurs,+HUGE_VAL,+HUGE_VALF, or+HUGE_VALL is returned.

      If a range error due to underflow occurs, the correct result (after rounding) is returned.

      [edit]Error handling

      Errors are reported as specified inmath_errhandling.

      If the implementation supports IEEE floating-point arithmetic (IEC 60559),

      • hypot(x, y),hypot(y, x), andhypot(x,-y) are equivalent
      • if one of the arguments is ±0,hypot is equivalent tofabs called with the non-zero argument
      • if one of the arguments is ±∞,hypot returns +∞ even if the other argument is NaN
      • otherwise, if any of the arguments is NaN, NaN is returned.

      [edit]Notes

      Implementations usually guarantee precision of less than 1 ulp (units in the last place):GNU,BSD.

      hypot(x, y) is equivalent tocabs(x+ I*y).

      POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).

      hypot(INFINITY, NAN) returns +∞, butsqrt(INFINITY* INFINITY+ NAN* NAN) returns NaN.

      [edit]Example

      Run this code
      #include <errno.h>#include <fenv.h>#include <float.h>#include <math.h>#include <stdio.h>// #pragma STDC FENV_ACCESS ON int main(void){// typical usageprintf("(1,1) cartesian is (%f,%f) polar\n", hypot(1,1),atan2(1,1)); // special valuesprintf("hypot(NAN,INFINITY) = %f\n", hypot(NAN, INFINITY)); // error handlingerrno=0;feclearexcept(FE_ALL_EXCEPT);printf("hypot(DBL_MAX,DBL_MAX) = %f\n", hypot(DBL_MAX,DBL_MAX));if(errno==ERANGE)perror("    errno == ERANGE");if(fetestexcept(FE_OVERFLOW))puts("    FE_OVERFLOW raised");}

      Possible output:

      (1,1) cartesian is (1.414214,0.785398) polarhypot(NAN,INFINITY) = infhypot(DBL_MAX,DBL_MAX) = inf    errno == ERANGE: Numerical result out of range    FE_OVERFLOW raised

      [edit]References

      • C23 standard (ISO/IEC 9899:2024):
      • 7.12.7.3 The hypot functions (p: TBD)
      • 7.25 Type-generic math <tgmath.h> (p: TBD)
      • F.10.4.3 The hypot functions (p: TBD)
      • C17 standard (ISO/IEC 9899:2018):
      • 7.12.7.3 The hypot functions (p: 181)
      • 7.25 Type-generic math <tgmath.h> (p: 272-273)
      • F.10.4.3 The hypot functions (p: 382)
      • C11 standard (ISO/IEC 9899:2011):
      • 7.12.7.3 The hypot functions (p: 248)
      • 7.25 Type-generic math <tgmath.h> (p: 373-375)
      • F.10.4.3 The hypot functions (p: 524)
      • C99 standard (ISO/IEC 9899:1999):
      • 7.12.7.3 The hypot functions (p: 229)
      • 7.22 Type-generic math <tgmath.h> (p: 335-337)
      • F.9.4.3 The hypot functions (p: 461)

      [edit]See also

      (C99)(C99)
      computes a number raised to the given power (\(\small{x^y}\)xy)
      (function)[edit]
      (C99)(C99)
      computes square root (\(\small{\sqrt{x} }\)x)
      (function)[edit]
      (C99)(C99)(C99)
      computes cube root (\(\small{\sqrt[3]{x} }\)3x)
      (function)[edit]
      (C99)(C99)(C99)
      computes the magnitude of a complex number
      (function)[edit]
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=c/numeric/math/hypot&oldid=172025"

      [8]ページ先頭

      ©2009-2025 Movatter.jp