Common mathematical functions| Functions | | Basic operations | | | | Maximum/minimum operations | | | | Exponential functions | | | | Power functions | | | | Trigonometric and hyperbolic functions | | |
| | Nearest integer floating-point | | | | Floating-point manipulation | | | | Narrowing operations | | | | Quantum and quantum exponent | | | | Decimal re-encoding functions | | | | Total order and payload functions | | | | Classification | | |
| | Error and gamma functions | | | | Types | | | | Macro constants | | Special floating-point values | | | | Arguments and return values | | (C99)(C99)(C99)(C99)(C99) |
| | (C23)(C23)(C23)(C23)(C23) |
| | Error handling | | | | Fast operation indicators | | |
|
| | |
float tanhf(float arg); | (1) | (since C99) |
double tanh(double arg); | (2) | |
longdouble tanhl(longdouble arg); | (3) | (since C99) |
| | |
#define tanh( arg ) | (4) | (since C99) |
| | |
1-3) Computes the hyperbolic tangent ofarg.
4) Type-generic macro: If the argument has type
longdouble,
tanhl is called. Otherwise, if the argument has integer type or the type
double,
tanh is called. Otherwise,
tanhf is called. If the argument is complex, then the macro invokes the corresponding complex function (
ctanhf,
ctanh,
ctanhl).
[edit]Parameters
| arg | - | floating-point value representing a hyperbolic angle |
[edit]Return value
If no errors occur, the hyperbolic tangent of
arg (
tanh(arg), or
) is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
[edit]Error handling
Errors are reported as specified inmath_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, ±0 is returned.
- If the argument is ±∞, ±1 is returned.
- If the argument is NaN, NaN is returned.
POSIX specifies that in case of underflow,arg is returned unmodified, and if that is not supported, an implementation-defined value no greater thanDBL_MIN,FLT_MIN, andLDBL_MIN is returned.
[edit]Example
#include <math.h>#include <stdio.h> int main(void){printf("tanh(1) = %f\ntanh(-1) = %f\n", tanh(1), tanh(-1));printf("tanh(0.1)*sinh(0.2)-cosh(0.2) = %f\n", tanh(0.1)*sinh(0.2)-cosh(0.2));// special valuesprintf("tanh(+0) = %f\ntanh(-0) = %f\n", tanh(0.0), tanh(-0.0));}Output:
tanh(1) = 0.761594tanh(-1) = -0.761594tanh(0.1)*sinh(0.2)-cosh(0.2) = -1.000000tanh(+0) = 0.000000tanh(-0) = -0.000000
[edit]References
- C23 standard (ISO/IEC 9899:2024):
- 7.12.5.6 The tanh functions (p: TBD)
- 7.25 Type-generic math <tgmath.h> (p: TBD)
- F.10.2.6 The tanh functions (p: TBD)
- C17 standard (ISO/IEC 9899:2018):
- 7.12.5.6 The tanh functions (p: TBD)
- 7.25 Type-generic math <tgmath.h> (p: TBD)
- F.10.2.6 The tanh functions (p: TBD)
- C11 standard (ISO/IEC 9899:2011):
- 7.12.5.6 The tanh functions (p: 242)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- F.10.2.6 The tanh functions (p: 520)
- C99 standard (ISO/IEC 9899:1999):
- 7.12.5.6 The tanh functions (p: 222-223)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- F.9.2.6 The tanh functions (p: 457)
- C89/C90 standard (ISO/IEC 9899:1990):
- 4.5.3.3 The tanh function
[edit]See also
| computes hyperbolic sine (\({\small\sinh{x} }\)sinh(x)) (function)[edit] |
| computes hyperbolic cosine (\({\small\cosh{x} }\)cosh(x)) (function)[edit] |
| computes inverse hyperbolic tangent (\({\small\operatorname{artanh}{x} }\)artanh(x)) (function)[edit] |
| computes the complex hyperbolic tangent (function)[edit] |
|