| Types and the imaginary constant | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
| Manipulation | |||||||||||||||||||||||||||||||
| Power and exponential functions | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| Trigonometric functions | |||||||||||||||||||||||||||||||
| Hyperbolic functions | |||||||||||||||||||||||||||||||
Defined in header <complex.h> | ||
| (1) | (since C99) | |
| (2) | (since C99) | |
| (3) | (since C99) | |
Defined in header <tgmath.h> | ||
#define pow( x, y ) | (4) | (since C99) |
cpowl is called. if any argument has typedoublecomplex,cpow is called, if any argument has typefloatcomplex,cpowf is called. If the arguments are real or integer, then the macro invokes the corresponding real function (powf,pow,powl). If any argument is imaginary, the corresponding complex number version is called.Contents |
| x, y | - | complex argument |
If no errors occur, the complex powerxy
, is returned.
Errors and special cases are handled as if the operation is implemented bycexp(y*clog(x)), except that the implementation is allowed to treat special cases more carefully.
#include <stdio.h>#include <complex.h> int main(void){doublecomplex z= cpow(1.0+2.0*I,2);printf("(1+2i)^2 = %.1f%+.1fi\n",creal(z),cimag(z)); doublecomplex z2= cpow(-1,0.5);printf("(-1+0i)^0.5 = %.1f%+.1fi\n",creal(z2),cimag(z2)); doublecomplex z3= cpow(conj(-1),0.5);// other side of the cutprintf("(-1-0i)^0.5 = %.1f%+.1fi\n",creal(z3),cimag(z3)); doublecomplex z4= cpow(I, I);// i^i = exp(-pi/2)printf("i^i = %f%+fi\n",creal(z4),cimag(z4));}
Output:
(1+2i)^2 = -3.0+4.0i(-1+0i)^0.5 = 0.0+1.0i(-1-0i)^0.5 = 0.0-1.0ii^i = 0.207880+0.000000i
(C99)(C99)(C99) | computes the complex square root (function)[edit] |
(C99)(C99) | computes a number raised to the given power (\(\small{x^y}\)xy) (function)[edit] |
C++ documentation forpow | |