Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      casinhf, casinh, casinhl

      From cppreference.com
      <c‎ |numeric‎ |complex
       
       
       
      Complex number arithmetic
      Types and the imaginary constant
      (C99)
      (C99)    
      (C11)
      (C99)
      Manipulation
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      Power and exponential functions
      (C99)
      (C99)
      (C99)
      (C99)
      Trigonometric functions
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      Hyperbolic functions
      (C99)
      (C99)
      (C99)
      (C99)
      casinh
      (C99)
      (C99)
       
      Defined in header<complex.h>
      floatcomplex       casinhf(floatcomplex z);
      (1)(since C99)
      doublecomplex      casinh(doublecomplex z);
      (2)(since C99)
      longdoublecomplex casinhl(longdoublecomplex z);
      (3)(since C99)
      Defined in header<tgmath.h>
      #define asinh( z )
      (4)(since C99)
      1-3) Computes the complex arc hyperbolic sine ofz with branch cuts outside the interval[−i; +i] along the imaginary axis.
      4) Type-generic macro: Ifz has typelongdoublecomplex,casinhl is called. ifz has typedoublecomplex,casinh is called, ifz has typefloatcomplex,casinhf is called. Ifz is real or integer, then the macro invokes the corresponding real function (asinhf,asinh,asinhl). Ifz is imaginary, then the macro invokes the corresponding real version of the functionasin, implementing the formulaasinh(iy) = i asin(y), and the return type is imaginary.

      Contents

      [edit]Parameters

      z - complex argument

      [edit]Return value

      If no errors occur, the complex arc hyperbolic sine ofz is returned, in the range of a strip mathematically unbounded along the real axis and in the interval[−iπ/2; +iπ/2] along the imaginary axis.

      [edit]Error handling and special values

      Errors are reported consistent withmath_errhandling

      If the implementation supports IEEE floating-point arithmetic,

      • casinh(conj(z))==conj(casinh(z))
      • casinh(-z)==-casinh(z)
      • Ifz is+0+0i, the result is+0+0i
      • Ifz isx+∞i (for any positive finite x), the result is+∞+π/2
      • Ifz isx+NaNi (for any finite x), the result isNaN+NaNi andFE_INVALID may be raised
      • Ifz is+∞+yi (for any positive finite y), the result is+∞+0i
      • Ifz is+∞+∞i, the result is+∞+iπ/4
      • Ifz is+∞+NaNi, the result is+∞+NaNi
      • Ifz isNaN+0i, the result isNaN+0i
      • Ifz isNaN+yi (for any finite nonzero y), the result isNaN+NaNi andFE_INVALID may be raised
      • Ifz isNaN+∞i, the result is±∞+NaNi (the sign of the real part is unspecified)
      • Ifz isNaN+NaNi, the result isNaN+NaNi

      [edit]Notes

      Although the C standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".

      Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments(-i∞,-i) and(i,i∞) of the imaginary axis.

      The mathematical definition of the principal value of the inverse hyperbolic sine isasinh z = ln(z +1+z2
      )

      For any z,asinh(z) =
      asin(iz)
      i

      [edit]Example

      Run this code
      #include <stdio.h>#include <complex.h> int main(void){doublecomplex z= casinh(0+2*I);printf("casinh(+0+2i) = %f%+fi\n",creal(z),cimag(z)); doublecomplex z2= casinh(-conj(2*I));// or casinh(CMPLX(-0.0, 2)) in C11printf("casinh(-0+2i) (the other side of the cut) = %f%+fi\n",creal(z2),cimag(z2)); // for any z, asinh(z) = asin(iz)/idoublecomplex z3= casinh(1+2*I);printf("casinh(1+2i) = %f%+fi\n",creal(z3),cimag(z3));doublecomplex z4=casin((1+2*I)*I)/I;printf("casin(i * (1+2i))/i = %f%+fi\n",creal(z4),cimag(z4));}

      Output:

      casinh(+0+2i) = 1.316958+1.570796icasinh(-0+2i) (the other side of the cut) = -1.316958+1.570796icasinh(1+2i) = 1.469352+1.063440icasin(i * (1+2i))/i =  1.469352+1.063440i

      [edit]References

      • C11 standard (ISO/IEC 9899:2011):
      • 7.3.6.2 The casinh functions (p: 192-193)
      • 7.25 Type-generic math <tgmath.h> (p: 373-375)
      • G.6.2.2 The casinh functions (p: 540)
      • G.7 Type-generic math <tgmath.h> (p: 545)
      • C99 standard (ISO/IEC 9899:1999):
      • 7.3.6.2 The casinh functions (p: 174-175)
      • 7.22 Type-generic math <tgmath.h> (p: 335-337)
      • G.6.2.2 The casinh functions (p: 475)
      • G.7 Type-generic math <tgmath.h> (p: 480)

      [edit]See also

      (C99)(C99)(C99)
      computes the complex arc hyperbolic cosine
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex arc hyperbolic tangent
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex hyperbolic sine
      (function)[edit]
      (C99)(C99)(C99)
      computes inverse hyperbolic sine (\({\small\operatorname{arsinh}{x} }\)arsinh(x))
      (function)[edit]
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=c/numeric/complex/casinh&oldid=77475"

      [8]ページ先頭

      ©2009-2025 Movatter.jp