Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      cacoshf, cacosh, cacoshl

      From cppreference.com
      <c‎ |numeric‎ |complex
       
       
       
      Complex number arithmetic
      Types and the imaginary constant
      (C99)
      (C99)    
      (C11)
      (C99)
      Manipulation
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      Power and exponential functions
      (C99)
      (C99)
      (C99)
      (C99)
      Trigonometric functions
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      Hyperbolic functions
      (C99)
      (C99)
      (C99)
      cacosh
      (C99)
      (C99)
      (C99)
       
      Defined in header<complex.h>
      floatcomplex       cacoshf(floatcomplex z);
      (1)(since C99)
      doublecomplex      cacosh(doublecomplex z);
      (2)(since C99)
      longdoublecomplex cacoshl(longdoublecomplex z);
      (3)(since C99)
      Defined in header<tgmath.h>
      #define acosh( z )
      (4)(since C99)
      1-3) Computes complex arc hyperbolic cosine of a complex valuez with branch cut at values less than 1 along the real axis.
      4) Type-generic macro: Ifz has typelongdoublecomplex,cacoshl is called. ifz has typedoublecomplex,cacosh is called, ifz has typefloatcomplex,cacoshf is called. Ifz is real or integer, then the macro invokes the corresponding real function (acoshf,acosh,acoshl). Ifz is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.

      Contents

      [edit]Parameters

      z - complex argument

      [edit]Return value

      The complex arc hyperbolic cosine ofz in the interval[0; ∞) along the real axis and in the interval[−iπ; +iπ] along the imaginary axis.

      [edit]Error handling and special values

      Errors are reported consistent withmath_errhandling

      If the implementation supports IEEE floating-point arithmetic,

      • cacosh(conj(z))==conj(cacosh(z))
      • Ifz is±0+0i, the result is+0+iπ/2
      • Ifz is+x+∞i (for any finite x), the result is+∞+iπ/2
      • Ifz is+x+NaNi (for non-zero finite x), the result isNaN+NaNi andFE_INVALID may be raised.
      • Ifz is0+NaNi, the result isNaN±iπ/2, where the sign of the imaginary part is unspecified
      • Ifz is-∞+yi (for any positive finite y), the result is+∞+iπ
      • Ifz is+∞+yi (for any positive finite y), the result is+∞+0i
      • Ifz is-∞+∞i, the result is+∞+3iπ/4
      • Ifz is+∞+∞i, the result is+∞+iπ/4
      • Ifz is±∞+NaNi, the result is+∞+NaNi
      • Ifz isNaN+yi (for any finite y), the result isNaN+NaNi andFE_INVALID may be raised.
      • Ifz isNaN+∞i, the result is+∞+NaNi
      • Ifz isNaN+NaNi, the result isNaN+NaNi

      [edit]Notes

      Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".

      Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment(-∞,+1) of the real axis.

      The mathematical definition of the principal value of the inverse hyperbolic cosine isacosh z = ln(z +z+1z-1)

      For any z,acosh(z) =
      z-1
      1-z
      acos(z)
      , or simplyi acos(z) in the upper half of the complex plane.

      [edit]Example

      Run this code
      #include <stdio.h>#include <complex.h> int main(void){doublecomplex z= cacosh(0.5);printf("cacosh(+0.5+0i) = %f%+fi\n",creal(z),cimag(z)); doublecomplex z2=conj(0.5);// or cacosh(CMPLX(0.5, -0.0)) in C11printf("cacosh(+0.5-0i) (the other side of the cut) = %f%+fi\n",creal(z2),cimag(z2)); // in upper half-plane, acosh(z) = i*acos(z)doublecomplex z3=casinh(1+I);printf("casinh(1+1i) = %f%+fi\n",creal(z3),cimag(z3));doublecomplex z4= I*casin(1+I);printf("I*asin(1+1i) = %f%+fi\n",creal(z4),cimag(z4));}

      Output:

      cacosh(+0.5+0i) = 0.000000-1.047198icacosh(+0.5-0i) (the other side of the cut) = 0.500000-0.000000icasinh(1+1i) = 1.061275+0.666239iI*asin(1+1i) = -1.061275+0.666239i

      [edit]References

      • C11 standard (ISO/IEC 9899:2011):
      • 7.3.6.1 The cacosh functions (p: 192)
      • 7.25 Type-generic math <tgmath.h> (p: 373-375)
      • G.6.2.1 The cacosh functions (p: 539-540)
      • G.7 Type-generic math <tgmath.h> (p: 545)
      • C99 standard (ISO/IEC 9899:1999):
      • 7.3.6.1 The cacosh functions (p: 174)
      • 7.22 Type-generic math <tgmath.h> (p: 335-337)
      • G.6.2.1 The cacosh functions (p: 474-475)
      • G.7 Type-generic math <tgmath.h> (p: 480)

      [edit]See also

      (C99)(C99)(C99)
      computes the complex arc cosine
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex arc hyperbolic sine
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex arc hyperbolic tangent
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex hyperbolic cosine
      (function)[edit]
      (C99)(C99)(C99)
      computes inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x} }\)arcosh(x))
      (function)[edit]
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=c/numeric/complex/cacosh&oldid=121959"

      [8]ページ先頭

      ©2009-2025 Movatter.jp