Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Inferring ancient divergences requires genes with strong phylogenetic signals

Naturevolume 497pages327–331 (2013)Cite this article

Subjects

Abstract

To tackle incongruence, the topological conflict between different gene trees, phylogenomic studies couple concatenation with practices such as rogue taxon removal or the use of slowly evolving genes. Phylogenomic analysis of 1,070 orthologues from 23 yeast genomes identified 1,070 distinct gene trees, which were all incongruent with the phylogeny inferred from concatenation. Incongruence severity increased for shorter internodes located deeper in the phylogeny. Notably, whereas most practices had little or negative impact on the yeast phylogeny, the use of genes or internodes with high average internode support significantly improved the robustness of inference. We obtained similar results in analyses of vertebrate and metazoan phylogenomic data sets. These results question the exclusive reliance on concatenation and associated practices, and argue that selecting genes with strong phylogenetic signals and demonstrating the absence of significant incongruence are essential for accurately reconstructing ancient divergences.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The yeast species phylogeny recovered from the concatenation analysis of 1,070 genes disagrees with every gene tree, despite absolute bootstrap support.
Figure 2: Differences in yeast phylogenies inferred from different phylogenomic practices.
Figure 3: Incongruence is more prevalent in shorter internodes located deeper on the phylogeny.

Similar content being viewed by others

References

  1. Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life.Nature452, 745–749 (2008)

    Article CAS ADS  Google Scholar 

  2. Rokas, A., Kruger, D. & Carroll, S. B. Animal evolution and the molecular signature of radiations compressed in time.Science310, 1933–1938 (2005)

    Article ADS  Google Scholar 

  3. Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships.Curr. Biol.19, 706–712 (2009)

    Article CAS  Google Scholar 

  4. Schierwater, B. et al. Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis.PLoS Biol.7, e20 (2009)

    Article  Google Scholar 

  5. Regier, J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences.Nature463, 1079–1083 (2010)

    Article CAS ADS  Google Scholar 

  6. Phillips, M. J., Delsuc, F. D. & Penny, D. Genome-scale phylogeny and the detection of systematic biases.Mol. Biol. Evol.21, 1455–1458 (2004)

    Article CAS  Google Scholar 

  7. Hess, J. & Goldman, N. Addressing inter-gene heterogeneity in maximum likelihood phylogenomic analysis: yeasts revisited.PLoS ONE6, e22783 (2011)

    Article CAS ADS  Google Scholar 

  8. Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent.Trends Ecol. Evol.24, 332–340 (2009)

    Article  Google Scholar 

  9. Rokas, A. & Carroll, S. B. Bushes in the tree of life.PLoS Biol.4, e352 (2006)

    Article  Google Scholar 

  10. Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough.PLoS Biol.9, e1000602 (2011)

    Article CAS  Google Scholar 

  11. Kocot, K. M. et al. Phylogenomics reveals deep molluscan relationships.Nature477, 452–456 (2011)

    Article CAS ADS  Google Scholar 

  12. Smith, S. A. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools.Nature480, 364–367 (2011)

    Article CAS ADS  Google Scholar 

  13. Bourlat, S. J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida.Nature444, 85–88 (2006)

    Article CAS ADS  Google Scholar 

  14. Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates.Nature439, 965–968 (2006)

    Article CAS ADS  Google Scholar 

  15. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies.Mol. Biol. Evol.23, 254–267 (2006)

    Article CAS  Google Scholar 

  16. Regier, J. C. et al. Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence.Syst. Biol.57, 920–938 (2008)

    Article CAS  Google Scholar 

  17. Regier, J. C. & Zwick, A. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods.PLoS ONE6, e23408 (2011)

    Article CAS ADS  Google Scholar 

  18. Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Syst. Biol.56, 564–577 (2007)

    Article CAS  Google Scholar 

  19. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies.Nature425, 798–804 (2003)

    Article CAS ADS  Google Scholar 

  20. Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species.Genome Res.15, 1456–1461 (2005)

    Article CAS  Google Scholar 

  21. Fitzpatrick, D. A., O'Gaora, P., Byrne, K. P. & Butler, G. Analysis of gene evolution and metabolic pathways using theCandida Gene Order Browser.BMC Genomics11, 290 (2010)

    Article  Google Scholar 

  22. Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S. & Wolfe, K. H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts.Nature440, 341–345 (2006)

    Article CAS ADS  Google Scholar 

  23. Salichos, L. & Rokas, A. Evaluating ortholog prediction algorithms in a yeast model clade.PLoS ONE6, e18755 (2011)

    Article CAS ADS  Google Scholar 

  24. Slot, J. C. & Rokas, A. MultipleGAL pathway gene clusters evolved independently and by different mechanisms in fungi.Proc. Natl Acad. Sci. USA107, 10136–10141 (2010)

    Article CAS ADS  Google Scholar 

  25. Mossel, E. & Steel, M. A phase transition for a random cluster model on phylogenetic trees.Math. Biosci.187, 189–203 (2004)

    Article MathSciNet  Google Scholar 

  26. Townsend, J. P., Su, Z. & Tekle, Y. I. Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny.Syst. Biol.61, 835–849 (2012)

    Article CAS  Google Scholar 

  27. Scannell, D. R. et al. The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for theSaccharomyces sensu stricto genus.G31, 11–25 (2011)

    Article CAS  Google Scholar 

  28. Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees.Math. Biosci.53, 131–147 (1981)

    Article MathSciNet  Google Scholar 

  29. Farris, J. S., Kallersjo, M., Kluge, A. G. & Bult, C. Testing significance of incongruence.Cladistics10, 315–319 (1995)

    Article  Google Scholar 

  30. Templeton, A. R. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes.Evolution37, 221–244 (1983)

    Article CAS  Google Scholar 

  31. Baker, R. H. & DeSalle, R. Multiple sources of character information and the phylogeny of Hawaiian drosophilids.Syst. Biol.46, 654–673 (1997)

    Article CAS  Google Scholar 

  32. Rodrigo, A. G., Kelly-Borges, M., Bergquist, P. G. & Bergquist, P. L. A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree.N. Z. J. Bot.31, 257–268 (1993)

    Article  Google Scholar 

  33. Yu, Y., Degnan, J. H. & Nakhleh, L. The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection.PLoS Genet.8, e1002660 (2012)

    Article CAS  Google Scholar 

  34. Hittinger, C. T., Rokas, A. & Carroll, S. B. Parallel inactivation of multipleGAL pathway genes and ecological diversification in yeasts.Proc. Natl Acad. Sci. USA101, 14144–14149 (2004)

    Article CAS ADS  Google Scholar 

  35. Rokas, A. & Carroll, S. B. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy.Mol. Biol. Evol.22, 1337–1344 (2005)

    Article CAS  Google Scholar 

  36. Jeffroy, O., Brinkmann, H., Delsuc, F. & Philippe, H. Phylogenomics: the beginning of incongruence?Trends Genet.22, 225–231 (2006)

    Article CAS  Google Scholar 

  37. Fitzpatrick, D. A., Logue, M. E., Stajich, J. E. & Butler, G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis.BMC Evol. Biol.6, 99 (2006)

    Article  Google Scholar 

  38. Liu, L., Yu, L., Pearl, D. K. & Edwards, S. V. Estimating species phylogenies using coalescence times among sequences.Syst. Biol.58, 468–477 (2009)

    Article CAS  Google Scholar 

  39. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap.Evolution39, 783–791 (1985)

    Article  Google Scholar 

  40. Hittinger, C. T., Johnston, M., Tossberg, J. T. & Rokas, A. Leveraging skewed transcript abundance by RNA-seq to increase the genomic depth of the tree of life.Proc. Natl Acad. Sci. USA107, 1476–1481 (2010)

    Article CAS ADS  Google Scholar 

  41. Kumar, S., Filipski, A. J., Battistuzzi, F. U., Kosakovsky Pond, S. L. & Tamura, K. Statistics and truth in phylogenomics.Mol. Biol. Evol.29, 457–472 (2012)

    Article CAS  Google Scholar 

  42. Cunningham, C. W. Can three incongruence tests predict when data should be combined?Mol. Biol. Evol.14, 733–740 (1997)

    Article CAS  Google Scholar 

  43. Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program.Brief. Bioinform.9, 286–298 (2008)

    Article CAS  Google Scholar 

  44. Abascal, F., Zardoya, R. & Posada, D. Prottest: selection of best-fit models of protein evolution.Bioinformatics21, 2104–2105 (2005)

    Article CAS  Google Scholar 

  45. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics22, 2688–2690 (2006)

    Article CAS  Google Scholar 

  46. Dujon, B. Yeast evolutionary genomics.Nature Rev. Genet.11, 512–524 (2010)

    Article CAS  Google Scholar 

  47. Scannell, D. R., Butler, G. & Wolfe, K. H. Yeast genome evolution-the origin of the species.Yeast24, 929–942 (2007)

    Article CAS  Google Scholar 

  48. Hall, C., Brachat, S. & Dietrich, F. S. Contribution of horizontal gene transfer to the evolution ofSaccharomyces cerevisiae.Eukaryot. Cell4, 1102–1115 (2005)

    Article CAS  Google Scholar 

  49. League, G. P., Slot, J. C. & Rokas, A. TheASP3 locus inSaccharomyces cerevisiae originated by horizontal gene transfer fromWickerhamomyces.FEMS Yeast Res.12, 859–863 (2012)

    Article CAS  Google Scholar 

  50. Novo, M. et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeastSaccharomyces cerevisiae EC1118.Proc. Natl Acad. Sci. USA106, 16333–16338 (2009)

    Article CAS ADS  Google Scholar 

  51. Ashburner, M. et al. Gene ontology: tool for the unification of biology.Nature Genet.25, 25–29 (2000)

    Article CAS  Google Scholar 

  52. Beissbarth, T. & Speed, T. P. GOstat: find statistically overrepresented Gene Ontologies within a group of genes.Bioinformatics20, 1464–1465 (2004)

    Article CAS  Google Scholar 

  53. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach.Mol. Biol. Evol.18, 691–699 (2001)

    Article CAS  Google Scholar 

  54. Zwickl, D. J.Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. Ph.D. thesis, Univ. Texas at Austin. (2006)

  55. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics19, 1572–1574 (2003)

    Article CAS  Google Scholar 

  56. Bryant, D. inBioconsensus (eds Janowitz, M. et al.) 163–184 (American Mathematical Society and DIMACS, 2003)

    Book  Google Scholar 

  57. Felsenstein, J.Inferring Phylogenies. (Sinauer, 2003)

    Google Scholar 

  58. Alix, B., Boubacar, D. A. & Vladimir, M. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks.Nucleic Acids Res.40, W573–W579 (2012)

    Article CAS  Google Scholar 

  59. Kuhner, M. K. & Felsenstein, J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates.Mol. Biol. Evol.11, 459–468 (1994)

    CAS PubMed  Google Scholar 

  60. Holland, B. R., Huber, K. T., Moulton, V. & Lockhart, P. J. Using consensus networks to visualize contradictory evidence for species phylogeny.Mol. Biol. Evol.21, 1459–1461 (2004)

    Article CAS  Google Scholar 

  61. Shannon, C. E. A mathematical theory of communication.Bell Syst. Tech. J.27, 379–423 (1948)

    Article MathSciNet  Google Scholar 

  62. Rogozin, I. B., Wolf, Y. I., Carmel, L. & Koonin, E. V. Ecdysozoan clade rejected by genome-wide analysis of rare amino acid replacements.Mol. Biol. Evol.24, 1080–1090 (2007)

    Article CAS  Google Scholar 

  63. Belinky, F., Cohen, O. & Huchon, D. Large-scale parsimony analysis of metazoan indels in protein-coding genes.Mol. Biol. Evol.27, 441–451 (2010)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Polzin for providing a script that identified alignment sites that contained single substitutions between amino acids that differ in their physicochemical properties. We thank members of the Rokas laboratory and B. O’Meara for valuable comments on this work. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University. This work was supported by the National Science Foundation (DEB-0844968).

Author information

Authors and Affiliations

  1. Department of Biological Sciences, Vanderbilt University, Nashville, 37235, Tennessee, USA

    Leonidas Salichos & Antonis Rokas

Authors
  1. Leonidas Salichos

    You can also search for this author inPubMed Google Scholar

  2. Antonis Rokas

    You can also search for this author inPubMed Google Scholar

Contributions

L.S. and A.R. conceived and designed experiments; L.S. carried out experiments; L.S. and A.R. analysed data and wrote the paper.

Corresponding author

Correspondence toAntonis Rokas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-17. (PDF 1109 kb)

Rights and permissions

About this article

Cite this article

Salichos, L., Rokas, A. Inferring ancient divergences requires genes with strong phylogenetic signals.Nature497, 327–331 (2013). https://doi.org/10.1038/nature12130

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Calling time on phylogenetic analysis

Evolutionary events that happened close together, but long ago, present particular challenges to those seeking to reconstruct evolutionary history. The usual method relies on brute force — simply concatenate as much genetic information as possible and see what comes out. But how good are the data used to make such concatenations? Leonidas Salichos and Antonis Rokas asked this question of a 1,070-gene data set from 23 yeast genomes, and discovered that none of the 1,070 gene trees was identical to the phylogeny that received 100% support from the concatenation analysis. Incongruence severity increased for shorter internodes located deeper on the phylogeny. The researchers untied the knot by giving most credence to genes or internodes with high average clade support. They argue that abolishing incongruence in the data should be a first step for anyone seeking to unravel evolutionary events in deep time.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp