- Letter
- Published:
Endemic African mammals shake the phylogenetic tree
- Mark S. Springer1,
- Gregory C. Cleven1,
- Ole Madsen2,
- Wilfried W. de Jong2,3,
- Victor G. Waddell4,
- Heather M. Amrine1 &
- …
- Michael J. Stanhope4
Naturevolume 388, pages61–64 (1997)Cite this article
4620Accesses
291Citations
4Altmetric
Abstract
The order Insectivora, including living taxa (lipotyphlans) and archaic fossil forms, is central to the question of higher-level relationships among placental mammals1. Beginning with Huxley2, it has been argued that insectivores retain many primitive features and are closer to the ancestral stock of mammals than are other living groups3. Nevertheless, cladistic analysis suggests that living insectivores, at least, are united by derived anatomical features4. Here we analyse DNA sequences from three mitochondrial genes and two nuclear genes to examine relationships of insectivores to other mammals. The representative insectivores are not monophyletic in any of our analyses. Rather, golden moles are included in a clade that contains hyraxes, manatees, elephants, elephant shrews and aardvarks. Members of this group are of presumed African origin5,6. This implies that there was an extensive African radiation from a single common ancestor that gave rise to ecologically divergent adaptive types. 12S ribosomal RNA transversions suggest that the base of this radiation occurred during Africa's window of isolation in the Cretaceous period before land connections were developed with Europe in the early Cenozoic era.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Novacek, M. J. Mammalian phylogeny: shaking the tree.Nature356, 121–125 (1992).
Huxley, T. H. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly to the Mammalia.Proc. R. Soc. Lond.43, 649–662 (1880).
Matthew, W. D. The Carnivora and Insectivora of the Bridger Basin, Middle Eocene.Mem. Am. Mus. Nat. Hist.9, 291–567 (1909).
MacPhee, R. D. E. & Novacek, M. J. inMammal PhylogenyVol. 2,Placentals(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 13–31 (Springer, New York, (1993)),
Carroll, R. L.Vertebrate Paleontology and Evolution(Freeman, New York, (1988)).
Gheerbrant, E., Sudre, J. & Cappetta, H. APalaeocene proboscidean from Morocco.Nature383, 68–70 (1996).
Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M. & Springer, M. S. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.Mol. Phyl. Evol.6, 245–258 (1996).
Madsen, O., Deen, P. M. T., Pesole, G., Saccone, C. & de Jong, W. W. Molecular evolution of mammalian aquaporin-2: further evidence that elephant shrew and aardvark join the paenungulate clade.Mol. Biol. Evol.14, 363–371 (1997).
Porter, C. A., Goodman, M. & Stanhope, M. J. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene.Mol. Phys. Evol.5, 89–101 (1996).
Stanhope, M. J. et al. Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: convincing evidence for several superordinal clades.J. Mol. Evol.43, 83–92 (1996).
Cope, E. D. The condylarthra.Am. Nat.18, 790–805, 892–906 (1884).
Fischer, M. S. & Tassy, P. inMammal PhylogenyVol. 2,Placentals(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 217–234 (Springer, New York, (1993)).
de Jong, W. W., Zweers, A. & Goodman, M. Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences.Nature292, 538–540 (1981).
de Jong, W. W., Leunissen, J. A. M. & Wistow, G. J. inMammal PhylogenyVol. 2,Placentals(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 5–12 (Springer, New York, (1993)).
Faith, D. P. Cladistic permutation tests for monophyly and nonmonophyly.Syst. Zool.40, 366–375 (1991).
Kishino, H. & Hasegawa, M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.J. Mol. Evol.29, 170–179 (1989).
Glover, T. D. Aspects of sperm production in some east African mammals.J. Reprod. Fertil.35, 45–53 (1973).
Hartenberger, J. L. Hypothese paleontologique sur l'origine des Macroscelidea (Mammalia).C.R. Acad. Sci.302, 247–249 (1986).
Novacek, M. inMacromolecular Sequences in Systematic and Evolutionary Biology(ed. Goodman, M.) 3–41 (Plenum, New York, (1982)).
Sibley, C. G. & Ahlquist, J. E. Reconstructing bird phylogeny by comparing DNAs.Sci. Am.254, 82–92 (1986).
Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals.Nature381, 226–229 (1996).
Springer, M. S., Hollar, L. J. & Burk, A. Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals.Mol. Biol. Evol.12, 1138–1150 (1995).
Thompson, J. D., Higgins, G. D. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res.22, 4673–4680 (1994).
Springer, M. S. & Douzery, D. Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules.J. Mol. Evol.43, 357–373 (1996).
De Rijk, P., Van de Peer, Y., Chapelle, S. & De Wachter, R.Nucleic Acids Res.22, 3495–3501 (1994).
Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. inMolecular Systematics(eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–514 (Sinauer, Sunderland, MA, (1996)).
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol. Biol. Evol.10, 512–526 (1993).
Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution.Mol. Biol. Evol.11, 605–612 (1994).
Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.J. Mol. Evol.21, 160–174 (1985).
Arnason, U., Gullberg, A., Janke, A. & Xu, X. Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs.J. Mol. Evol.43, 650–661 (1996).
Acknowledgements
This work was supported by the Alfred P. Sloan Foundation, the European Commission, the NSF, the Nuffield Foundation and the Royal Society. We thank D. Willemsen for technical assistance, D. Swofford for permission to use PAUP 4.0d52-54, and F. Catzeflis, E. Harley, J. Kirsch, G. Olbricht, J. Wensing and the Noorder Zoo for tissue samples.
Author information
Authors and Affiliations
*Department of Biology, University of California, Riverside, 92521, California, USA
Mark S. Springer, Gregory C. Cleven & Heather M. Amrine
†Department of Biochemistry, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
Ole Madsen & Wilfried W. de Jong
‡Institute for Systematics and Population Biology, University of Amsterdam, PO Box 94766, 1090GT Amsterdam, The Netherlands
Wilfried W. de Jong
§Biology and Biochemistry, Queen's University, 97 Lisburn Road, Belfast, BT9 07BL, UK
Victor G. Waddell & Michael J. Stanhope
- Mark S. Springer
Search author on:PubMed Google Scholar
- Gregory C. Cleven
Search author on:PubMed Google Scholar
- Ole Madsen
Search author on:PubMed Google Scholar
- Wilfried W. de Jong
Search author on:PubMed Google Scholar
- Victor G. Waddell
Search author on:PubMed Google Scholar
- Heather M. Amrine
Search author on:PubMed Google Scholar
- Michael J. Stanhope
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toMark S. Springer.
Rights and permissions
About this article
Cite this article
Springer, M., Cleven, G., Madsen, O.et al. Endemic African mammals shake the phylogenetic tree.Nature388, 61–64 (1997). https://doi.org/10.1038/40386
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Seasonal and diel variations in the acoustic communication of tree hyraxes in Taita Hills, Kenya
- Hanna Rosti
- Henry Pihlström
- Jouko Rikkinen
Mammalian Biology (2024)
Did some extinct South American native ungulates arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé’s (2021) Sudamericungulata – Panameridiungulata hypothesis
- Alejandro G. Kramarz
- Ross D. E. Macphee
Journal of Mammalian Evolution (2023)
Individual, social, and sexual niche traits affect copulation success in a polygynandrous mating system
- Einat Bar Ziv
- Amiyaal Ilany
- Lee Koren
Behavioral Ecology and Sociobiology (2016)
Brown adipose tissue: physiological function and evolutionary significance
- R. Oelkrug
- E. T. Polymeropoulos
- M. Jastroch
Journal of Comparative Physiology B (2015)
Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus
- Puli Chandramouli Reddy
- Ishani Sinha
- Sanjeev Galande
Journal of Biosciences (2015)


