Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Endemic African mammals shake the phylogenetic tree

Naturevolume 388pages61–64 (1997)Cite this article

Abstract

The order Insectivora, including living taxa (lipotyphlans) and archaic fossil forms, is central to the question of higher-level relationships among placental mammals1. Beginning with Huxley2, it has been argued that insectivores retain many primitive features and are closer to the ancestral stock of mammals than are other living groups3. Nevertheless, cladistic analysis suggests that living insectivores, at least, are united by derived anatomical features4. Here we analyse DNA sequences from three mitochondrial genes and two nuclear genes to examine relationships of insectivores to other mammals. The representative insectivores are not monophyletic in any of our analyses. Rather, golden moles are included in a clade that contains hyraxes, manatees, elephants, elephant shrews and aardvarks. Members of this group are of presumed African origin5,6. This implies that there was an extensive African radiation from a single common ancestor that gave rise to ecologically divergent adaptive types. 12S ribosomal RNA transversions suggest that the base of this radiation occurred during Africa's window of isolation in the Cretaceous period before land connections were developed with Europe in the early Cenozoic era.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Majority-rule parsimony bootstrap trees based on mitochondrial (a), vWF (b), and A2AB (c) sequences.

Similar content being viewed by others

References

  1. Novacek, M. J. Mammalian phylogeny: shaking the tree.Nature356, 121–125 (1992).

    Article ADS CAS  Google Scholar 

  2. Huxley, T. H. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly to the Mammalia.Proc. R. Soc. Lond.43, 649–662 (1880).

    Google Scholar 

  3. Matthew, W. D. The Carnivora and Insectivora of the Bridger Basin, Middle Eocene.Mem. Am. Mus. Nat. Hist.9, 291–567 (1909).

    Google Scholar 

  4. MacPhee, R. D. E. & Novacek, M. J. inMammal PhylogenyVol. 2,Placentals(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 13–31 (Springer, New York, (1993)),

    Book  Google Scholar 

  5. Carroll, R. L.Vertebrate Paleontology and Evolution(Freeman, New York, (1988)).

    Google Scholar 

  6. Gheerbrant, E., Sudre, J. & Cappetta, H. APalaeocene proboscidean from Morocco.Nature383, 68–70 (1996).

    Article ADS CAS  Google Scholar 

  7. Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M. & Springer, M. S. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.Mol. Phyl. Evol.6, 245–258 (1996).

    Article CAS  Google Scholar 

  8. Madsen, O., Deen, P. M. T., Pesole, G., Saccone, C. & de Jong, W. W. Molecular evolution of mammalian aquaporin-2: further evidence that elephant shrew and aardvark join the paenungulate clade.Mol. Biol. Evol.14, 363–371 (1997).

    Article CAS  Google Scholar 

  9. Porter, C. A., Goodman, M. & Stanhope, M. J. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene.Mol. Phys. Evol.5, 89–101 (1996).

    Article CAS  Google Scholar 

  10. Stanhope, M. J. et al. Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: convincing evidence for several superordinal clades.J. Mol. Evol.43, 83–92 (1996).

    Article ADS CAS  Google Scholar 

  11. Cope, E. D. The condylarthra.Am. Nat.18, 790–805, 892–906 (1884).

    Article  Google Scholar 

  12. Fischer, M. S. & Tassy, P. inMammal PhylogenyVol. 2,Placentals(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 217–234 (Springer, New York, (1993)).

    Book  Google Scholar 

  13. de Jong, W. W., Zweers, A. & Goodman, M. Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences.Nature292, 538–540 (1981).

    Article ADS CAS  Google Scholar 

  14. de Jong, W. W., Leunissen, J. A. M. & Wistow, G. J. inMammal PhylogenyVol. 2,Placentals(eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 5–12 (Springer, New York, (1993)).

    Book  Google Scholar 

  15. Faith, D. P. Cladistic permutation tests for monophyly and nonmonophyly.Syst. Zool.40, 366–375 (1991).

    Article  Google Scholar 

  16. Kishino, H. & Hasegawa, M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.J. Mol. Evol.29, 170–179 (1989).

    Article ADS CAS  Google Scholar 

  17. Glover, T. D. Aspects of sperm production in some east African mammals.J. Reprod. Fertil.35, 45–53 (1973).

    Article CAS  Google Scholar 

  18. Hartenberger, J. L. Hypothese paleontologique sur l'origine des Macroscelidea (Mammalia).C.R. Acad. Sci.302, 247–249 (1986).

    Google Scholar 

  19. Novacek, M. inMacromolecular Sequences in Systematic and Evolutionary Biology(ed. Goodman, M.) 3–41 (Plenum, New York, (1982)).

    Book  Google Scholar 

  20. Sibley, C. G. & Ahlquist, J. E. Reconstructing bird phylogeny by comparing DNAs.Sci. Am.254, 82–92 (1986).

    Article CAS  Google Scholar 

  21. Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals.Nature381, 226–229 (1996).

    Article ADS CAS  Google Scholar 

  22. Springer, M. S., Hollar, L. J. & Burk, A. Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals.Mol. Biol. Evol.12, 1138–1150 (1995).

    CAS PubMed  Google Scholar 

  23. Thompson, J. D., Higgins, G. D. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res.22, 4673–4680 (1994).

    Article CAS  Google Scholar 

  24. Springer, M. S. & Douzery, D. Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules.J. Mol. Evol.43, 357–373 (1996).

    Article ADS CAS  Google Scholar 

  25. De Rijk, P., Van de Peer, Y., Chapelle, S. & De Wachter, R.Nucleic Acids Res.22, 3495–3501 (1994).

    Google Scholar 

  26. Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. inMolecular Systematics(eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–514 (Sinauer, Sunderland, MA, (1996)).

    Google Scholar 

  27. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol. Biol. Evol.10, 512–526 (1993).

    CAS PubMed  Google Scholar 

  28. Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution.Mol. Biol. Evol.11, 605–612 (1994).

    CAS PubMed  Google Scholar 

  29. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.J. Mol. Evol.21, 160–174 (1985).

    Article ADS  Google Scholar 

  30. Arnason, U., Gullberg, A., Janke, A. & Xu, X. Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs.J. Mol. Evol.43, 650–661 (1996).

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alfred P. Sloan Foundation, the European Commission, the NSF, the Nuffield Foundation and the Royal Society. We thank D. Willemsen for technical assistance, D. Swofford for permission to use PAUP 4.0d52-54, and F. Catzeflis, E. Harley, J. Kirsch, G. Olbricht, J. Wensing and the Noorder Zoo for tissue samples.

Author information

Authors and Affiliations

  1. *Department of Biology, University of California, Riverside, 92521, California, USA

    Mark S. Springer, Gregory C. Cleven & Heather M. Amrine

  2. †Department of Biochemistry, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands

    Ole Madsen & Wilfried W. de Jong

  3. ‡Institute for Systematics and Population Biology, University of Amsterdam, PO Box 94766, 1090GT Amsterdam, The Netherlands

    Wilfried W. de Jong

  4. §Biology and Biochemistry, Queen's University, 97 Lisburn Road, Belfast, BT9 07BL, UK

    Victor G. Waddell & Michael J. Stanhope

Authors
  1. Mark S. Springer
  2. Gregory C. Cleven
  3. Ole Madsen
  4. Wilfried W. de Jong
  5. Victor G. Waddell
  6. Heather M. Amrine
  7. Michael J. Stanhope

Corresponding author

Correspondence toMark S. Springer.

Rights and permissions

About this article

Cite this article

Springer, M., Cleven, G., Madsen, O.et al. Endemic African mammals shake the phylogenetic tree.Nature388, 61–64 (1997). https://doi.org/10.1038/40386

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp