An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems
Ullah, Z.; Coombs, W. M.; Augarde, C. E.
Authors
Dr Zahur Ullahzahur.ullah@durham.ac.uk
Associate Professor
Professor William Coombsw.m.coombs@durham.ac.uk
Professor
Professor Charles Augardecharles.augarde@durham.ac.uk
Head Of Department
Abstract
In this paper, an automatic adaptive coupling procedure is proposed for the finite element method (FEM) and the element-free Galerkin method (EFGM) for linear elasticity and for problems with both material and geometrical nonlinearities. In this new procedure, initially the whole of the problem domain is modelled using the FEM. During an analysis, those finite elements which violate a predefined error measure are automatically converted to an EFG zone. This EFG zone can be further refined by adding nodes, thus avoiding computationally expensive FE remeshing. Local maximum entropy shape functions are used in the EFG zone of the problem domain for two reasons: their weak Kronecker delta property at the boundaries allows straightforward imposition of essential boundary conditions and also provides a natural way to couple the EFG and FE regions compared to the use of moving least squares basis functions. The Zienkiewicz and Zhu error estimation procedure with the superconvergent patch method for strains and stresses recovery is used in the FE region of the problem domain, while the Chung and Belytschko error estimation procedure is used in the EFG region.
Citation
Ullah, Z., Coombs, W. M., & Augarde, C. E. (2013). An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 267, 111-132.https://doi.org/10.1016/j.cma.2013.07.018
Journal Article Type | Article |
---|---|
Publication Date | Dec 1, 2013 |
Deposit Date | Aug 29, 2013 |
Publicly Available Date | Oct 1, 2014 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Print ISSN | 0045-7825 |
Electronic ISSN | 1879-2138 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 267 |
Pages | 111-132 |
DOI | https://doi.org/10.1016/j.cma.2013.07.018 |
Keywords | Meshless method, Maximum entropy shape functions, FE–EFGM coupling, Error estimation, Adaptivity, Superconvergent patch recovery. |
Public URL | https://durham-repository.worktribe.com/output/1479182 |
Files
Organisation(s)
Research Centres
You might also like
UKACM Proceedings 2024(2024)
Presentation / Conference Contribution
Simulation of strain localisation with an elastoplastic micropolar material point method(2024)
Presentation / Conference Contribution
Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics(2024)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail:dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered byWorktribe © 2025
Advanced Search
[8]ページ先頭