Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and EEG Recordings
2.2. EEG Processing
2.3. Permutation Entropy Algorithm
2.4. Frequency-Domain Algorithm
2.5. Artificial Neural Network
2.6. Support Vector Machine
2.7. Performance Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Sensitivity of | Sensitivity of | Sensitivity of | Sensitivity of | Classification | |
---|---|---|---|---|---|
Awake | Light Anesthesia | General Anesthesia | Deep Anesthesia | Accuracy | |
ANN | 36.2% | 51.4% | 39.7% | 6% | 42.2% |
References
- Sebel, P.S.; Bowdle, T.A.; Ghoneim, M.M.; Rampil, I.J.; Padilla, R.E.; Gan, T.J.; Domino, K.B. The incidence of awareness during anesthesia: A multicenter United States study.Anesth. Analg.2004,99, 833–839. [Google Scholar] [CrossRef]
- Jiang, G.J.; Fan, S.Z.; Abbod, M.F.; Huang, H.H.; Lan, J.Y.; Tsai, F.F.; Chang, H.C.; Yang, Y.W.; Chuang, F.L.; Chiu, Y.F.; et al. Sample Entropy Analysis of EEG Signals via Artificial Neural Networks to Model Patients’ Consciousness Level Based on Anesthesiologists Experience.Biomed. Res. Int.2015,2015, 343478. [Google Scholar] [CrossRef]
- Monk, T.G.; Saini, V.; Weldon, B.C.; Sigl, J.C. Anesthetic management and one-year mortality after noncardiac surgery.Anesth. Analg.2005,100, 4–10. [Google Scholar] [CrossRef]
- Shalbaf, R.; Behnam, H.; Sleigh, J.W.; Steyn-Ross, A.; Voss, L.J. Monitoring the depth of anesthesia using entropy features and an artificial neural network.J. Neurosci. Methods2013,218, 17–24. [Google Scholar] [CrossRef]
- Shalbaf, R.; Behnam, H.; Sleigh, J.W.; Voss, L.J. Using the Hilbert-Huang transform to measure the electroencephalographic effect of propofol.Physiol. Meas.2012,33, 271–285. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Liang, Z.; Voss, L.J.; Sleigh, J.W. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia.J. Neural. Eng.2010,7, 046010. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, Y.; Sun, X.; Li, D.; Voss, L.J.; Sleigh, J.W.; Hagihira, S.; Li, X. EEG entropy measures in anesthesia.Front. Comput. Neurosci.2015,9, 16. [Google Scholar] [CrossRef]
- Al-Kadi, M.I.; Reaz, M.B.I.; Ali, M.A.M. Evolution of Electroencephalogram Signal Analysis Techniques during Anesthesia.Sensors2013,13, 6605–6635. [Google Scholar] [CrossRef] [Green Version]
- Schwender, D.; Daunderer, M.; Klasing, S.; Finsterer, U.; Peter, K. Power spectral analysis of the electroencephalogram during increasing end-expiratory concentrations of isoflurane, desflurane and sevoflurane.Anaesthesia1998,53, 335–342. [Google Scholar] [CrossRef]
- Otto, K.A.; Cebotari, S.; Hoffler, H.K.; Tudorache, I. Electroencephalographic Narcotrend index, spectral edge frequency and median power frequency as guide to anaesthetic depth for cardiac surgery in laboratory sheep.Vet. J.2012,191, 354–359. [Google Scholar] [CrossRef]
- Schultz, A.; Siedenberg, M.; Grouven, U.; Kneif, T.; Schultz, B. Comparison of Narcotrend Index, Bispectral Index, Spectral and Entropy Parameters during Induction of Propofol-Remifentanil Anaesthesia.J. Clin. Monit. Comput.2008,22, 103–111. [Google Scholar] [CrossRef]
- Ellerkmann, R.K.; Soehle, M.; Riese, G.; Zinserling, J.; Wirz, S.; Hoeft, A.; Bruhn, J. The Entropy Module (R) and Bispectral Index (R) as guidance for propofol-remifentanil anaesthesia in combination with regional anaesthesia compared with a standard clinical practice group.Anaesth. Intensive Care2010,38, 159–166. [Google Scholar] [CrossRef]
- Revuelta, M.; Paniagua, P.; Campos, J.M.; Fernandez, J.A.; Martinez, A.; Jospin, M.; Litvan, H. Validation of the index of consciousness during sevoflurane and remifentanil anaesthesia: A comparison with the bispectral index and the cerebral state index.Br. J. Anaesthesia2008,101, 653–658. [Google Scholar] [CrossRef]
- Viertio-Oja, H.; Maja, V.; Sarkela, M.; Talja, P.; Tenkanen, N.; Tolvanen-Laakso, H.; Paloheimo, M.; Vakkuri, A.; Yli-Hankala, A.; Merilainen, P. Description of the Entropy (TM) algorithm as applied in the Datex-Ohmeda S/5 (TM) Entropy Module.Acta Anaesthesiol. Scand.2004,48, 154–161. [Google Scholar] [CrossRef]
- Casteleiro-Roca, J.L.; Calvo-Rolle, J.L.; Méndez Pérez, J.A.; Roqueñí Gutiérrez, N.; De Cos Juez, F.J. Hybrid Intelligent System to Perform Fault Detection on BIS Sensor during Surgeries.Sensors2017,17. [Google Scholar] [CrossRef]
- Rampil, I.J. A primer for EEG signal processing in anesthesia.Anesthesiology1998,89, 980–1002. [Google Scholar] [CrossRef]
- Morimoto, Y.; Hagihira, S.; Koizumi, Y.; Ishida, K.; Matsumoto, M.; Sakabe, T. The relationship between bispectral index and electroencephalographic parameters during isoflurane anesthesia.Anesth. Analg.2004,98, 1336–1340. [Google Scholar] [CrossRef]
- Elbert, T.; Ray, W.J.; Kowalik, Z.J.; Skinner, J.E.; Graf, K.E.; Birbaumer, N. Chaos and physiology: Deterministic chaos in excitable cell assemblies.Physiol. Rev.1994,74, 1–47. [Google Scholar] [CrossRef]
- Fell, J.; Kaplan, A.; Darkhovsky, B.; Roschke, J. EEG analysis with nonlinear deterministic and stochastic methods: A combined strategy.Acta Neurobiol. Exp.2000,60, 87–108. [Google Scholar]
- Stam, C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field.Clin. Neurophysiol.2005,116, 2266–2301. [Google Scholar] [CrossRef]
- Bai, Y.; Liang, Z.; Li, X.; Voss, L.J.; Sleigh, J.W. Permutation Lempel-Ziv complexity measure of electroencephalogram in GABAergic anaesthetics.Physiol. Meas.2015,36, 2483. [Google Scholar] [CrossRef]
- Olofsen, E.; Sleigh, J.W.; Dahan, A. Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect.Br. J. Anaesth.2008,101, 810–821. [Google Scholar] [CrossRef]
- Li, X.L.; Cui, S.Y.; Voss, L.J. Using permutation entropy to measure the electroencephalographic effects of sevoflurane.Anesthesiology2008,109, 448–456. [Google Scholar] [CrossRef]
- Li, D.; Liang, Z.; Wang, Y.; Hagihira, S.; Sleigh, J.W.; Li, X. Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect.J. Clin. Monit. Comput.2013,27, 113–123. [Google Scholar] [CrossRef]
- Zhu, L.; Cui, G.; Cao, J.; Cichocki, A.; Zhang, J.; Zhou, C. A Hybrid System for Distinguishing between Brain Death and Coma Using Diverse EEG Features.Sensors2019,19, 1342. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series.Phys. Rev. Lett.2002,88, 174102. [Google Scholar] [CrossRef]
- Huang, J.R.; Fan, S.Z.; Abbod, M.F.; Jen, K.K.; Wu, J.F.; Shieh, J.S. Application of Multivariate Empirical Mode Decomposition and Sample Entropy in EEG Signals via Artificial Neural Networks for Interpreting Depth of Anesthesia.Entropy2013,15, 3325–3339. [Google Scholar] [CrossRef]
- Kortelainen, J.; Vayrynen, E.; Seppanen, T. Isomap Approach to EEG-Based Assessment of Neurophysiological Changes during Anesthesia.IEEE Trans. Neural Syst. Rehabilit. Eng.2011,19, 113–120. [Google Scholar] [CrossRef]
- Ortolani, O.; Conti, A.; Di Filippo, A.; Adembri, C.; Moraldi, E.; Evangelisti, A.; Maggini, M.; Roberts, S.J. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia.Br. J. Anaesth.2002,88, 644–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Yu, J.; Wu, L.; Liu, Y.; Jia, C.; Xie, Y. Analysis and Feature Extraction of EEG Signals Induced by Anesthesia Monitoring Based on Wavelet Transform.IEEE Access2019,7, 41565–41575. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, L.; Fan, S.Z.; Abbod, M.F.; Shieh, J.S. Sample entropy analysis for the estimating depth of anaesthesia through human EEG signal at different levels of unconsciousness during surgeries.PeerJ2018,6, e4817. [Google Scholar] [CrossRef]
- Shalbaf, A.; Saffar, M.; Sleigh, J.W.; Shalbaf, R. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.IEEE J. Biomed. Health Inform.2018,22, 671–677. [Google Scholar] [CrossRef]
- Shalbaf, A.; Shalbaf, R.; Saffar, M.; Sleigh, J. Monitoring the level of hypnosis using a hierarchical SVM system.J. Clin. Monitor. Comput.2019, 1–8. [Google Scholar] [CrossRef]
- Li, X.L.; Li, D.; Liang, Z.H.; Voss, L.J.; Sleigh, J.W. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy.Clin. Neurophysiol.2008,119, 2465–2475. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, Y.; Ouyang, G.; Voss, L.J.; Sleigh, J.W.; Li, X. Permutation auto-mutual information of electroencephalogram in anesthesia.J. Neural Eng.2013,10, 026004. [Google Scholar] [CrossRef]
- Schwender, D.; Daunderer, M.; Mulzer, S.; Klasing, S.; Finsterer, U.; Peter, K. Spectral edge frequency of the electroencephalogram to monitor "depth" of anaesthesia with isoflurane or propofol.Br. J. Anaesth.1996,77, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Bose, N.K.; Liang, P.Neural Network Fundamentals with Graphs, Algorithms, and Applications (McGraw-Hill Series in Electrical and Computer Engineering); McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Zhang, G.Q.; Hu, M.Y.; Patuwo, B.E.; Indro, D.C. Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis.Eur. J. Op. Res.1999,116, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Vapnik, V.The Nature of Statistical Learning Theory; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Gunn, S.R.Support Vector Machines for Classification and Regression; ISIS Technical Report; University of Southampton: Southampton, UK, 1998; p. 14. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines.ACM Trans. Intell. Syst. Technol.2011,2, 27. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement.Lancet1986,1, 307–310. [Google Scholar] [CrossRef]
Subject | Raw EEG Length (min) | Preprocessed EEG Length (min) | Number of Samples |
---|---|---|---|
Patient 1 | 139 | 130 | 130 |
Patient 2 | 139 | 138 | 138 |
Patient 3 | 170 | 168 | 168 |
Patient 4 | 135 | 134 | 134 |
Patient 5 | 88 | 87 | 87 |
Patient 6 | 68 | 63 | 63 |
Patient 7 | 134 | 129 | 129 |
Patient 8 | 129 | 126 | 126 |
Patient 9 | 110 | 109 | 109 |
Patient 10 | 108 | 108 | 108 |
Patient 11 | 126 | 125 | 125 |
Patient 12 | 138 | 137 | 137 |
Patient 13 | 168 | 168 | 168 |
Patient 14 | 124 | 124 | 124 |
Patient 15 | 88 | 80 | 80 |
Patient 16 | 124 | 121 | 121 |
Sensitivity of | Sensitivity of | Sensitivity of | Sensitivity of | Classification | |
---|---|---|---|---|---|
Awake | Light Anesthesia | General Anesthesia | Deep Anesthesia | Accuracy | |
82.8% | 65.5% | 81.3% | 8% | 73.7% | |
81.5% | 64.2% | 80.3% | 4% | 72.4% | |
80.7% | 63.6% | 79.4% | 6% | 71.8% | |
79.8% | 60.6% | 81.5% | 2% | 70.7% |
Single | Classification | Two | Classification | Three | Classification | Four | Classification |
---|---|---|---|---|---|---|---|
Feature | Accuracy | Features | Accuracy | Features | Accuracy | Features | Accuracy |
PE | 73.7% | PE-SFS | 75.7% | PE-SFS-BR | 76.2% | PE-SFS-BR-SEF95 | 79.1% |
SFS | 63.6% | PE-BR | 76.0% | PE-SFS-SEF95 | 76.8% | ||
BR | 60.4% | PE-SEF95 | 75.5% | PE-BR-SEF95 | 75.8% | ||
SEF95 | 66.7% | SFS-BR | 64.6% | SFS-BR-SEF95 | 71.8% | ||
SFS-SEF95 | 69.1% | ||||||
BR-SEF95 | 64.4% |
Sensitivity of | Sensitivity of | Sensitivity of | Sensitivity of | Classification | |
---|---|---|---|---|---|
Awake | Light Anesthesia | General Anesthesia | Deep Anesthesia | Accuracy | |
ANN | 86.4% | 73.6% | 84.4% | 14% | 79.1% |
SVM | 84.8% | 71.1% | 82.1% | 2% | 76.7% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Liang, Z.; Hagihira, S. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.Sensors2019,19, 2499. https://doi.org/10.3390/s19112499
Gu Y, Liang Z, Hagihira S. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.Sensors. 2019; 19(11):2499. https://doi.org/10.3390/s19112499
Chicago/Turabian StyleGu, Yue, Zhenhu Liang, and Satoshi Hagihira. 2019. "Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia"Sensors 19, no. 11: 2499. https://doi.org/10.3390/s19112499
APA StyleGu, Y., Liang, Z., & Hagihira, S. (2019). Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.Sensors,19(11), 2499. https://doi.org/10.3390/s19112499