Antioxidant, ?-Amylase and ?-Glucosidase Inhibitory Activities and Potential Constituents ofCanarium tramdenum Bark






Abstract
:1. Introduction
2. Results
2.1. Extraction Yield and Total Phenolic Contents
2.2. Antioxidant Activities
2.3. α-Amylase and α-Glucosidase Inhibitory Activities
2.4. Correlations between Total Phenolics and Biological Activities
2.5. GC-MS Results
2.6. Identification of α- and β-Amyrins by GC-MS
3. Discussion
4. Materials and Methods
4.1. Materials and Instrumentations
4.2. Sample Preparation and Extraction
4.3. Determination of Total Phenolic Content
4.4. DPPH Radical Scavenging Assay
4.5. ABTS Radical Cation Decolorization Assay
4.6. Reducing Power Assay
4.7. β-Carotene Bleaching Assay
4.8. Nitric Oxide Scavenging Assay
4.9. Porcine Pancreatic α-Amylase Inhibition Assay
4.10. α-Glucosidase Inhibition Assay
4.11. Identification of Phytochemical Component by GC-MS
4.12. Isolation of Bioactive Compounds α-Amyrin and β-Amyrin from TDBE Extract
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization.Global report on diabetes; World Health Organization: Geneva, Switzerland, 2016; pp. 1–88. [Google Scholar]
- Diabetes mellitus. Available online:https://www.who.int/mediacentre/factsheets/fs138/en/ (accessed on 18 December 2018).
- Wu, J.; Fang, X.; Yuan, Y.; Dong, Y.; Liang, Y.; Xie, Q.; Ban, J.; Chen, Y.; Zhufen, L. UPLC/Q-TOF-MS profiling of phenolics fromCanarium pimela leaves and its vasorelaxant and antioxidant activities.Braz. J. Pharmacog.2017,27, 716–723. [Google Scholar] [CrossRef]
- Wright, E.; Scism-Bacon, J.L.; Glass, L.C. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia.Int. J. Clin. Pract.2006,60, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach.Curr. Diabetes Rev.2011,7, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Antioxidant and α-glucosidase inhibitory activity of colored grains in China.J. Agric. Food Chem.2010,58, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Marrelli, M.; Conforti, F.; Tenuta, M.; Bonesi, M.; Menichini, F.; Loizzo, M.Trifolium pratense andT. repens (Leguminosae): Edible flower extracts as functional ingredients.Foods2015,4, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery.Metabolites2012,2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources.Int. J. Mol. Sci.2017,18, 96. [Google Scholar] [CrossRef]
- Hoang, V.S.; Nanthavong, K.; Keßler, P.J.A. Trees of Laos and Vietnam: A field guide to 100 economically or ecologically important species.Blumea: J. Plant Taxo. Plant Geo.2004,49, 201–349. [Google Scholar]
- Hoang, V.S.; Baas, P.; Keßler, P.J.A. Uses and conservation of plant species in a national park—A case study of Ben En, Vietnam.Econ. Bot.2008,62, 574–593. [Google Scholar] [CrossRef]
- Liang, Y.L.; Luo, Y.; Li, Y.L.; Dong, Y.F. Effect of fruit ofCanarium pimela Koening on vascular tension in rats.Chin. J. Gerontol.2011,31, 3099–3100. [Google Scholar]
- Zhen-Cheng, L.; Chen, K.; Zeng, Y.W.; Peng, Y.H. Nutritional composition ofCanarium pimela L. kernels.Food Chem.2011,125, 692–695. [Google Scholar]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review.Biochem. Anal. Biochem.2011,1, 106. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity.Saudi Pharm. J.2013,21, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro.Food Chem.2001,73, 285–290. [Google Scholar] [CrossRef]
- Boora, F.; Chirisa, E.; Mukanganyama, S. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents.J. Food Process.2014,2014, 1–7. [Google Scholar] [CrossRef]
- Ki, C.C.; Seong, D.L.; Soo, W.K.; Nam, H.K.; Jong-Un, L.; Young, J.K. Role of nitric oxide in the pathogenesis of diabetic nephropathy in streptozotocin-induced diabetic rats.Korean J. Intern. Med.1999,14, 32–41. [Google Scholar]
- Santilli, F.; Cipollone, F.; Mezzetti, A.; Chiarelli, F. The role of nitric oxide in the development of diabetic angiopathy.Horm. Metab. Res.2004,36, 319–335. [Google Scholar]
- Hogan, S.; Zhang, L.; Li, J.; Sun, S.; Canning, C.; Zhou, K. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase.Nutr. Metab.2010,7, 71. [Google Scholar] [CrossRef] [Green Version]
- Thang, T.D.; Dai, D.N.; Luong, N.X.; Ogunwande, I.A. Constituents of essential oils from the leaves, stem barks and resins ofCanarium parvum Leen., andCanarium tramdenanum Dai et Yakovl. (Burseracea) grown in Vietnam.Nat. Prod. Res.2014,28, 461–466. [Google Scholar] [CrossRef]
- Fingolo, C.E.; Santos, T.D.S.; Filho, M.D.M.V.; Kaplan, M.A.C. Triterpene esters: Natural products fromDorstenia arifolia (Moraceae).Molecules2013,18, 4247–4256. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, X.; Ye, G.; Chen, Y.; Ji, X.; Wen, L.; Xu, Y.; Xu, H.; Zhan, R.; Chen, W. Characterisation of Two Oxidosqualene Cyclases Responsible for Triterpenoid Biosynthesis inIlex asprella.Int. J. Mol. Sci.2015,16, 3564–3578. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.; Chaves, M.H.; Almeida, F.R.C.; Lima, R.C.P.; Silva, R.M.; Maia, J.L.; Brito, G.A.A.C.; Santos, F.A.; Rao, V.S. Protective effect of α- and β-amyrin, a triterpene mixture fromProtium heptaphyllum (Aubl.) March. trunk wood resin, against acetaminophen-induced liver injury in mice.J. Ethnopharmacol.2005,98, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, L.H.; Palazon, J.; Navarro-Ocaña, A. The pentacyclic triterpenes α, β-amyrins: A review of sources and biological activities. InPhytochemicals—A Global Perspective of Their Role in Nutrition and Health; Venketeshwer, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 487–502. [Google Scholar]
- Otuki, M.F.; Ferreira, J.; Lima, F.V.; Meyre-silva, C.; Muller, L.A.; Cani, G.S.; Santos, A.R.S.; Yunes, R.A. Antinociceptive properties of mixture of α-amyrin and β-amyrin triterpenes: Evidence for participation of protein kinase C and protein kinase A pathways.Pharmacology2005,313, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.; Vieira-Júnior, G.M.; Chaves, M.H.; Almeida, F.R.C.; Florêncio, M.G.; Lima, R.C.P.; Silva, R.M.; Santos, F.A.; Rao, V.S.N. Gastroprotective and anti-inflammatory effects of resin fromProtium heptaphyllum in mice and rats.Pharmacol. Res.2004,49, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.; Vieira, G.M.; Chaves, M.H.; Almeida, F.R.C.; Santos, K.A.; Martins, F.S.; Silva, R.M.; Santos, F.A.; Rao, V.S.N. Gastroprotective effect of the mixture of α- and β-amyrin fromProtium heptaphyllum: Role of capsaicin-sensitive primary afferent neurons.Planta Med.2004,70, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Irudayaraj, S.S.; Duraipandiyan, V.; Al-Dhabi, N.A.; Agastian, P.; Ignacimuthu, S. Antioxidant and free radical scavenging effects of β-amyrin isolated fromS. cochinchinensis Moore. leaves.Ind. Crops Prod.2014,61, 510–516. [Google Scholar] [CrossRef]
- Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B.C. Beta-amyrin and alpha-amyrin acetate isolated from the stem bark ofAlstonia boonei display profound anti-inflammatory activity.Pharm. Biol.2014,52, 1478–1486. [Google Scholar] [CrossRef]
- Sridevi, H.; Jayaraman, P.; Pachaiyappan, P. Evaluation of α-glucosidase inhibitory action of isolated compound beta amyrin from Memecylon umbellatum Burm. F.Int. J. Pharmacogn. Phytochem. Res.2015,7, 1033–1038. [Google Scholar]
- Sirat, H.M.; Susanti, D.; Ahmad, F.; Takayama, H.; Kitajima, M. Amides, triterpene and flavonoids from the leaves ofMelastoma malabathricum L.J. Nat. Med.2010,64, 492–495. [Google Scholar] [CrossRef]
- Ogwuche, C.E.; Amupitan, J.O.; Ayo, R.G. Isolation and biological activity of the triterpene β-amyrin from the aerial plant parts ofMaesobotrya barteri (Baill).Med. Chem.2014,4, 729–733. [Google Scholar]
- Saeidnia, S.; Ara, L.; Hajimehdipoor, H.; Read, R.W.; Arshadi, S.; Nikan, M. Chemical constituents ofSwertia longifolia Boiss. with α-amylase inhibitory activity.Res. Pharm. Sci.2016,11, 23–32. [Google Scholar] [PubMed]
- Sritularak, B.; Boonplod, N.; Lipipun, V.; Likhitwitayawuid, K. Chemical constituents ofCanarium subulatum and their anti-herpetic and DPPH free radical scavenging properties.Rec. Nat. Prod.2013,7, 129–132. [Google Scholar]
- Canarium. Available online:http://www.theplantlist.org/1.1/browse/A/Burseraceae/Canarium/ (accessed on 20 December 2018).
- Zhang, L.; Lin, Y. Tannins fromCanarium album with potent antioxidant activity.J. Zhejiang Univ. Sci. B2008,9, 407–415. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xia, W. Preparative separation and purification of phenolic compounds fromCanarium album L. by macroporous resins.J. Sci. Food Agric.2008,88, 493–498. [Google Scholar] [CrossRef]
- Kuo, C.T.; Liu, T.H.; Hsu, T.H.; Lin, F.Y.; Chen, H.Y. Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit.Asian Pac. J. Trop. Med.2015,8, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Balkis Budin, S.; Kumar, S.; Warif, M.A.; Saari, S.M.; Fredalina Basri, D. Protective effect of aqueous extracts fromCanarium odontophyllum Miq. leaf on liver in streptozotocin-induced diabetic rats.Life Sci. Med. Biomed.2018,2, 1–5. [Google Scholar]
- Mokiran, N.N.; Ismail, A.; Azlan, A.; Hamid, M.; Hassan, F.A. Effect of dabai (Canarium odontophyllum) fruit extract on biochemical parameters of induced obese-diabetic rats.J. Funct. Foods2014,8, 139–149. [Google Scholar] [CrossRef]
- Kamtchouing, P.; Kahpui, S.M.; Dzeufiet, P.D.D.; Tédong, L.; Asongalem, E.A.; Dimo, T. Anti-diabetic activity of methanol/methylene chloride stem bark extracts ofTerminalia superba andCanarium schweinfurthii on streptozotocin-induced diabetic rats.J. Ethnopharmacol.2006,104, 306–309. [Google Scholar] [CrossRef]
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review.Eur. J. Med. Chem.2015,101, 295–312. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. Acarbose: Safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes.Open Heart2015,2, e000327. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds.Food Chem.2004,88, 411–417. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants.Food Sci. Hum. Wellness2014,3, 136–174. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.A.; Frota, J.T.; Arruda, B.R.; De Melo, T.S.; Da Silva, A.A.D.C.A.; Brito, G.A.D.C.; Chaves, M.H.; Rao, V.S. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture fromProtium heptaphyllum in mice.Lipids Health Dis.2012,11, 98. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.V.; Khang, D.T.; Dep, L.T.; Minh, T.N.; Nobukazu, N.; Xuan, T.D. The Potential use of a food-dyeing plantPeristrophe bivalvis (L.) Merr. in northern Vietnam.Int. J. Pharmacol. Phytochem. Ethnomed.2016,4, 14–26. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Tawata, S. Antioxidant activity of phenolic rich fraction obtained fromConvolvulus arvensis L. leaves grown in Egypt.Asian J. Crop Sci.2012,4, 32–40. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays.J. Nutri.2003,133, 2812–281. [Google Scholar] [CrossRef] [PubMed]
- Minh, T.N.; Tuyen, P.T.; Khang, D.T.; Quan, N.V.; Ha, P.T.T.; Quan, N.T.; Xuan, T.D. Potential use of plant waste from the moth orchid (Phalaenopsis Sogo Yukidian “V3”) as an antioxidant source.Foods2017,6, 85. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, P.T.; Xuan, T.D.; Khang, D.T.; Ahmad, A.; Quan, N.V.; Tu Anh, T.; Minh, T.N. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts ofCastanea crenata Sieb. et Zucc.Antioxidants2017,6, 31. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Rastogi, S.; Vijayakumar, M.; Shirwaikar, A.; Rawat, A.K.S.; Mehrotra, S.; Pushpangadan, P. Studies on the antioxidant activities ofDesmodium gangeticum.Biol. Pharm. Bull.2003,26, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.V.; Hoang-Dung, T.; Xuan, T.D.; Ahmad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors.Molecules2019,24, 482. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Lucius, A.; Meyer, T.; Gonzalez De Mejia, E. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum).J. Agric. Food Chem.2011,59, 8923–8930. [Google Scholar] [CrossRef] [PubMed]
- Andriana, Y.; Xuan, T.D.; Quan, N.V.; Quy, T.N. Allelopathic potential ofTridax procumbens L. on radish and identification of allelochemicals.Allelopathy J.2018,43, 223–237. [Google Scholar] [CrossRef]
Sample Availability: Samples ofCanarium tramdenum bark extracts and the mixture of α and β-amyrins are available from the authors. |
Samples | TPC (mg GAE /g DW) | DPPH Assay IC50 (µg/mL) | ABTS Assay IC50 (µg/mL) | RP Assay IC50 (µg/mL) | βC Assay LPI (%) |
---|---|---|---|---|---|
TDBS | 112.14 ± 1.19a | 15.41 ± 0.10c | 62.21 ± 1.78b | 33.25 ± 0.04b | 86.12 ± 0.98ab |
TDBE | 20.50 ± 0.60c | 22.23 ± 0.09e | 76.96 ± 1.04c | 41.60 ± 0.03d | 87.52 ± 0.73a |
TDBB | 36.57 ± 0.36b | 12.33 ± 0.02a | 47.87 ± 0.12a | 26.24 ± 0.02a | 86.75 ± 0.84ab |
TDBW | 33.55 ± 0.48b | 16.45 ± 0.07d | 45.25 ± 0.17a | 33.25 ± 0.06b | 84.09 ± 0.56b |
BHT | - | 14.99 ± 0.06b | 80.26 ± 1.11c | 38.34 ± 0.01c | 86.67 ± 0.33ab |
Sample | α-Amylase Inhibition IC50 (µg/mL) | α-Glucosidase Inhibition IC50 (µg/mL) |
---|---|---|
TDBS | 359.32 ± 6.73c | 28.17 ± 0.12c |
TDBE | 491.23 ± 2.49d | 141.37 ± 0.86b |
TDBB | 257.20 ± 1.15b | 18.93 ± 0.07e |
TDBW | 555.02 ± 9.10e | 25.27 ± 0.12d |
Acarbose | 80.26 ± 0.24a | 145.35 ± 0.62a |
TPC | DPPH | ABTS | RP | NO | βC | AG | |
---|---|---|---|---|---|---|---|
DPPH | 0.24 | - | - | - | - | - | |
ABTS | −0.15 | 0.68* | - | - | - | - | |
RP | 0.10 | 0.99* | 0.72 * | - | - | - | |
NO | 0.08 | 0.96* | 0.86 * | 0.97 * | - | - | |
βC | −0.08 | −0.10 | −0.52 | −0.10 | −0.26 | - | |
AG | 0.23 | 0.95* | 0.85 * | 0.94 * | 0.98 * | −0.33 | |
AA | 0.20 | 0.85* | 0.25 | 0.84 * | 0.70 * | 0.30 | 0.65 * |
Plant Species | Plant Parts | Quantity | Biological Activities | References |
---|---|---|---|---|
Protium kleinii | Resin | Mixture of α-,β-amyrins (1:1) 2.4 mg/g | Antinociception against the visceral pain in mice | [26] |
Protium heptaphyllum | Trunk wood resin | Mixture of α-,β-Amyrins | Gastroprotective, anti-inflammatory and hepatoprotective properties | [24,27,28] |
Symplocos cochinchinensis | Leaves | β-Amyrin 0.17 mg/g | Antioxidant and free-radical scavenging effects | [29] |
Alstonia boonei | Stem barks | β-Amyrin 0.08 mg/g | Anti-inflammatory activity | [30] |
Memecylon umbellatum | nm | nm | α-Glucosidase inhibitory activities | [31] |
Melastoma malabathricum | Leaves | α-Amyrin 0.06 mg/g | nm | [32] |
Maesobotrya barteri | Aerial parts | β-Amyrin | Antimicrobial activity | [33] |
Swertia longifolia | Aerial parts | α-Amyrin 0.01 mg/g; β-Amyrin 0.02 mg/g | α-Amylase inhibitory activity | [34] |
Canarium subulatum | Stem bark | β-Amyrin 0.03 mg/g | Anti-herpetic activity | [35] |
Canarium tramdenum | Barks | Mixture of α-,β-amyrins (3:4) 1.52 mg/g | nm | This study |
No. | Identified Compounds | RT (min) | Chemical Classification | Peak Area in Extracts (%) | |||
---|---|---|---|---|---|---|---|
TDBS | TDBE | TDBB | TDBW | ||||
1 | Glycerol | 4.62 | Carbohydrates | < | - | - | 37.73 |
2 | 2-Methoxyphenol | 6.39 | Phenolics | 1.19 | - | 1.57 | 3.63 |
3 | Pyrocatechol | 7.88 | Phenolics | 1.28 | - | 19.31 | 6.66 |
4 | 4-Methylcatechol | 9.21 | Phenolics | < | - | 1.67 | 1.38 |
5 | 2,6-Dimethoxyphenol | 10.08 | Phenolics | < | - | - | 1.43 |
6 | 2-Propylphenol | 10.35 | Phenolics | - | - | 3.54 | - |
7 | α-Cubebene | 10.58 | Terpenoids | 0.67 | < | - | - |
8 | 3,4-Dimethoxyphenol | 11.05 | Phenolics | < | - | - | 5.22 |
9 | Levoglucosan | 11.82 | Monosaccharides | < | - | 4.30 | 1.92 |
10 | 3,7(11)-Eudesmadiene | 12.37 | Terpenoids | 1.10 | < | - | - |
11 | Ibuprofen methyl ester | 12.55 | Phenylpropanoic acids | 1.20 | < | - | - |
12 | 4-Propylresorcinol | 13.18 | Phenolics | < | - | 13.90 | 1.75 |
13 | 3,4,5-Trimethoxyphenol | 13.24 | Phenolics | 0.71 | - | 1.99 | 5.24 |
14 | β-Guaiene | 13.69 | Terpenoids | 0.78 | 2.22 | - | - |
15 | Homovanillic acid | 13.79 | Phenolics | 1.06 | - | 13.39 | 3.26 |
16 | (−)-Spathulenol | 15.30 | Terpenoids | < | 0.92 | - | - |
17 | Methyl hinokiate | 16.62 | Terpenoids | < | 2.05 | - | - |
18 | Ylangenol | 17.07 | Terpenoids | < | 1.00 | - | - |
19 | Acetyltributyl citrate | 19.78 | Carboxylic acids | - | 1.89 | - | - |
20 | Stigmasterol | 27.86 | Steroids | < | 2.41 | - | - |
21 | γ-Sitosterol | 28.56 | Steroids | 0.89 | 6.52 | - | - |
22 | β-Amyrin | 29.12 | Terpenoids | 41.45 | 29.51 | - | - |
23 | Not identified | 29.32 | Not identified | 7.41 | 9.49 | - | - |
24 | α-Amyrin | 29.72 | Terpenoids | 19.17 | 20.18 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, ?-Amylase and ?-Glucosidase Inhibitory Activities and Potential Constituents ofCanarium tramdenum Bark.Molecules2019,24, 605. https://doi.org/10.3390/molecules24030605
Quan NV, Xuan TD, Tran H-D, Thuy NTD, Trang LT, Huong CT, Andriana Y, Tuyen PT. Antioxidant, ?-Amylase and ?-Glucosidase Inhibitory Activities and Potential Constituents ofCanarium tramdenum Bark.Molecules. 2019; 24(3):605. https://doi.org/10.3390/molecules24030605
Chicago/Turabian StyleQuan, Nguyen Van, Tran Dang Xuan, Hoang-Dung Tran, Nguyen Thi Dieu Thuy, Le Thu Trang, Can Thu Huong, Yusuf Andriana, and Phung Thi Tuyen. 2019. "Antioxidant, ?-Amylase and ?-Glucosidase Inhibitory Activities and Potential Constituents ofCanarium tramdenum Bark"Molecules 24, no. 3: 605. https://doi.org/10.3390/molecules24030605
APA StyleQuan, N. V., Xuan, T. D., Tran, H.-D., Thuy, N. T. D., Trang, L. T., Huong, C. T., Andriana, Y., & Tuyen, P. T. (2019). Antioxidant, ?-Amylase and ?-Glucosidase Inhibitory Activities and Potential Constituents ofCanarium tramdenum Bark.Molecules,24(3), 605. https://doi.org/10.3390/molecules24030605