Momilactones A and B Are ?-Amylase and ?-Glucosidase Inhibitors






Abstract
:1. Introduction
2. Results
2.1. Isolation and Confirmation of Momilactones A and B
2.1.1. HPLC
2.1.2. GC-MS
2.1.3.1H-NMR and13C-NMR
2.2. In Vitro Inhibition of α-Amylase and α-Glucosidase
2.3. Contents of MA and MB in Rice Plant Parts
3. Discussion
4. Materials and Methods
4.1. Collection and Extraction of Rice Husk
4.2. Isolation of Momilactones A and B from EtOAc Extract
4.3. Identification and Confirmation of Momilactones A and B by HPLC, TLC, GC-MS, and1H-NMR and13C-NMR Analyses
4.4. α-Amylase Inhibition Assay
4.5. α-Glucosidase Inhibition Assay
4.6. Quantification and Confirmation of MA and MB in Rice Plant Parts by HPLC and LC-ESI-MS
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IDF Diabetes Atlas—8th Edition. Available online:http://diabetesatlas.org/key-messages.html (accessed on 1 August 2018).
- Leahy, J.L. Pathogenesis of type 2 diabetes mellitus.Arch. Med. Res.2005,36, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Abesundara, K.J.M.; Matsui, T.; Matsumoto, K. α-Glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which,Cassia auriculata, exerts a strong antihyperglycemic effect in rats comparable to the therapeutic drug acarbose.J. Agric. Food Chem.2004,52, 2541–2545. [Google Scholar] [CrossRef] [PubMed]
- Ercan, P.; El, S.N. Inhibitory effects of chickpea andTribulus terrestris on lipase, α-amylase and α-glucosidase.Food Chem.2016,205, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Kwon, Y.I.; Shetty, K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension.Innov. Food Sci. Emerg. Technol.2007,8, 46–54. [Google Scholar] [CrossRef]
- Arulselvan, P.; Ghofar, H.A.A.; Karthivashan, G.; Halim, M.F.A.; Ghafar, M.S.A.; Fakurazi, S. Antidiabetic therapeutics from natural source: A systematic review.Biomed. Prev. Nutr.2014,4, 607–617. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Convergent or parallel molecular evolution of momilactone A and B: Potent allelochemicals, momilactones have been found only in rice and the mossHypnum plumaeforme.J. Plant Physiol.2011,168, 1511–1516. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T.M. Momilactones A and B: Optimization of yields from isolation and purification.Separations2018,5, 28. [Google Scholar] [CrossRef]
- Toyomasu, T.; Kagahara, T.; Okada, K.; Koga, J.; Hasegawa, M.; Mitsuhashi, W.; Sassa, T.; Yamane, H. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings.Biosci. Biotechnol. Biochem.2008,72, 562–567. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Hasegawa, M.; Ino, T.; Ota, K.; Kujime, H. Contribution of momilactone A and B to rice allelopathy.J. Plant Physiol.2010,167, 787–791. [Google Scholar] [CrossRef]
- Chung, I.M.; Jung, T.K.; Kim, S.H. Evaluation of allelopathic potential and quantification of momilactone A,B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds.J. Agric. Food Chem.2006,54, 2527–2536. [Google Scholar] [CrossRef]
- Cartwright, D.W.; Langcake, P.; Pryce, R.J.; Leworthy, D.P.; Ride, J.P. Isolation and characterization of two phytoalexins from rice as momilactones A and B.Phytochemistry1981,20, 535–537. [Google Scholar] [CrossRef]
- Obara, N.; Hasegawa, M.; Kodama, O. Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves.Biosci. Biotechnol. Biochem.2002,66, 2549–2559. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, M.; Xuan, T.D.; Deba, F.; Tawata, S.; Khanh, T.D.; Chung, I.M. Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B.J. Plant Interact.2007,2, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.D.; Minh, T.N.; Anh, L.H.; Khanh, T.D. Allelopathic momilactones A and B are implied in rice drought and salinity tolerance, not weed resistance.Agron. Sustain. Dev.2016,36, 52. [Google Scholar] [CrossRef]
- Quan, N.T.; Xuan, T.D. Foliar application of vanillic andp-hydroxybenzoic acids enhanced drought tolerance and formation of phytoalexin momilactones in rice.Arch. Agron. Soil Sci.2018, 1–16. [Google Scholar] [CrossRef]
- Chung, I.M.; Ali, M.; Hahn, S.J.; Siddiqui, N.A.; Lim, Y.H.; Ahmad, A. Chemical constituents from the hulls ofOryza sativa with cytotoxic activity.Chem. Nat. Compd.2005,41, 182–189. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, H.R.; Park, E.; Lee, S.C. Cytotoxic and antitumor activity of momilactone B from rice hulls.J. Agric. Food Chem.2007,55, 1702–1706. [Google Scholar] [CrossRef]
- Joung, Y.H.; Lim, E.J.; Kim, M.S.; Lim, S.D.; Yoon, S.Y.; Lim, Y.C.; Yoo, Y.B.; Ye, S.K.; Park, T.; Chung, I.M.; et al. Enhancement of hypoxia-induced apoptosis of human breast cancer cells via STAT5b by momilactone B.Int. J. Oncol.2008,33, 477–484. [Google Scholar] [CrossRef]
- Park, C.; Jeong, N.Y.; Kim, G.Y.; Han, M.H.; Chung, I.M.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of pRB phosphorylation and induction of the cyclin-dependent kinase inhibitor p21Waf1/Cip1.Oncol. Rep.2014,31, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T.M. Efficacy from different extractions for chemical profile and biological activities of rice husk.Sustainability2018,10, 1356. [Google Scholar] [CrossRef]
- Kang, D.Y.; Nipin, S.P.; Darvin, P.; Joung, Y.H.; Byun, H.J.; Do, C.H.; Park, K.D.; Park, M.N.; Cho, K.H.; Yang, Y.M. Momilactone B inhibits ketosis in vitro by regulating the ANGPTL3-LPL pathway and inhibiting HMGCS2.Anim. Biotechnol.2017,28, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Eliza, J.; Daisy, P.; Ignacimuthu, S.; Duraipandiyan, V. Normo-glycemic and hypolipidemic effect of costunolide isolated fromCostus specious (Koen ex Retz) Sm. in streptozotocin-induced diabetic rats.Chem. Biol. Interact.2009,179, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.C.; Hung, C.R.; Chen, W.C.; Cheng, J.T. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats.Planta Med.2003,69, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, R.; Asmawi, M.Z.; Sadikun, A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects ofAndrographis paniculata extract and andrographolide.Acta Biochim. Pol.2008,55, 391–398. [Google Scholar] [PubMed]
- Brahmachari, G. Andrographolide: A Molecule of Antidiabetic Promise. InDiscovery and Development of Antidiabetic Agents from Natural Products; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–27. ISBN 978-0-12-809450-1. [Google Scholar]
- Xu, H.W.; Liu, G.Z.; Dai, G.F.; Wu, C.L.; Liu, H.M. Modification of 15-akylidene andrographolide derivatives as alpha-glucosidase inhibitor.Drug Discov. Ther.2007,1, 73–77. [Google Scholar] [PubMed]
- Reddy, P.P.; Tiwari, A.K.; Ranga Rao, R.; Madhusudhana, K.; Rama Subba Rao, V.; Ali, A.Z.; Suresh Babu, K.; Madhusudana Rao, J. New Labdane diterpenes as intestinal α-glucosidase inhibitor from antihyperglycemic extract ofHedychium spicatum (Ham. Ex Smith) rhizomes.Bioorg. Med. Chem. Lett.2009,19, 2562–2565. [Google Scholar] [CrossRef] [PubMed]
- Ayinampudi, S.R.; Domala, R.; Merugu, R.; Bathula, S.; Janaswamy, M.R. New icetexane diterpenes with intestinal α-glucosidase inhibitory and free-radical scavenging activity isolated fromPremna tomentosa roots.Fitoterapia2012,83, 88–92. [Google Scholar] [CrossRef]
- Li, G.; Ding, W.; Wan, F.; Li, Y. Two new clerodane diterpenes fromTinospora sagittata.Molecules2016,21, 1250. [Google Scholar] [CrossRef]
- Ghosh, S.; Rangan, L. Molecular docking and inhibition studies of α-amylase activity by labdane diterpenes fromAlpinia nigra seeds.Med. Chem. Res.2014,23, 4836–4852. [Google Scholar] [CrossRef]
- Jelenković, L.; Jovanović, V.S.; Palić, I.; Mitić, V.; Radulović, M. In vitro screening of α-amylase inhibition by selected terpenes from essential oils.Trop. J. Pharm. Res.2014,13, 1421–1428. [Google Scholar] [CrossRef]
- Chiou, S.Y.; Lai, J.Y.; Liao, J.A.; Sung, J.M.; Lin, S.D. In vitro inhibition of lipase, α-amylase, α-glucosidase, and angiotensin-converting enzyme by defatted rice bran extracts of red-pericarp rice mutant.Cereal Chem.2017,95, 167–176. [Google Scholar] [CrossRef]
- Uraipong, C.; Zhao, J. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities.J. Sci. Food Agric.2016,96, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Boue, S.M.; Daigle, K.W.; Chen, M.H.; Cao, H.; Heiman, M.L. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts.J. Agric. Food Chem.2016,64, 5345–5353. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Huang, H.Y.; Chen, Y.Y.; Huang, C.L.; Chang, C.J.; Chen, H.L.; Lai, M.H. Ameliorative effects of stabilized rice bran on type 2 diabetes patients.Ann. Nutr. Metab.2010,56, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Xuan, T.D.; Minh, T.N.; Ali Siddiqui, N.; Quan, N.V. Comparative extraction and simple isolation improvement techniques of active constituents’ momilactone A and B from rice husks ofOryza sativa by HPLC analysis and column chromatography.Saudi Pharm. J.2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Yoneyama, K.; Takeuchi, Y.; Konnai, M.; Tamogami, S.; Kodama, O. Momilactones A and B in rice straw harvested at different growth stages.Biosci. Biotechnol. Biochem.1999,63, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, D.W.; Langcake, P.; Pryce, R.J.; Leworthy, D.P.; Ride, J.P. Chemical activation of host defence mechanisms as a basis for crop protection.Nature1977,267, 511–513. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants.Food Sci. Hum. Wellness2014,3, 136–174. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Xuan, T.D. Viewpoint: A contributory role of shell ginger (Alpinia zerumbet) for human longevity in Okinawa, Japan?Nutrients2018,10, 166. [Google Scholar] [CrossRef]
- Xuan, T.D.; Khanh, T.D.; Khang, D.T.; Quan, N.T.; Ezaawey, A.A. Changes in chemical composition, total phenolics and antioxidant activity of Alpinia (Alpinia zerumbet) leaves exposed to UV.Intl. Let. Nat. Sci.2016,55, 25–34. [Google Scholar] [CrossRef]
- Xuan, T.D.; Teschke, R. Dihydro-5, 6-dehydrokavain (DDK) fromAlpinia zerumbet: Its isolation, synthesis, and characterization.Molecules2015,20, 16306–16319. [Google Scholar] [CrossRef] [PubMed]
- Van, T.M.; Xuan, T.D.; Minh, T.N.; Quan, N.V. Isolation and purification of potent growth inhibitors fromPiper methysticum root.Molecules2018,23, 1907. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Kang, M.Y.; Nam, S.H.; Friedman, M. Antidiabetic effects of rice hull smoke extract in alloxan-induced diabetic mice.J. Agric. Food Chem.2012,60, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Yehia, R.S.; Saleh, A.M. Antifungal activity of rice straw extract on some phytopathogenic fungi.Afr. J. Biotechnol.2012,11, 13586–13590. [Google Scholar] [CrossRef]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review.BMJ2012,344, e1454. [Google Scholar] [CrossRef]
- Sun, Q.; Spiegelman, D.; Van Dam, R.M.; Holmes, M.D.; Malik, V.; Willett, W.C.; Hu, F.B. White rice, brown rice, and risk of type 2 diabetes in US men and women.Arch. Intern. Med.2011,140, 961–969. [Google Scholar] [CrossRef]
- Zhang, G.; Malik, V.S.; Pan, A.; Kumar, S.; Holmes, M.D.; Spiegelman, D.; Lin, X.; Hu, F.B. Substituting brown rice for white rice to lower diabetes risk: A focus-group study in Chinese adults.J. Am. Diet. Assoc.2010,110, 1216–1221. [Google Scholar] [CrossRef]
- Kozuka, C.; Yabiku, K.; Takayama, C.; Matsushita, M.; Shimabukuro, M.; Masuzaki, H. Natural food science based novel approach toward prevention and treatment of obesity and type 2 diabetes: Recent studies on brown rice and γ-oryzanol.Obes. Res. Clin. Pract.2013,7, e165–e172. [Google Scholar] [CrossRef]
- Shao, Y.; Bao, J. Polyphenols in whole rice grain: Genetic diversity and health benefits.Food Chem.2015,180, 86–97. [Google Scholar] [CrossRef]
- Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities.Food Chem.2007,101, 1616–1625. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Antioxidant and α-glucosidase inhibitory activity of colored grains in China.J. Agric. Food Chem.2010,58, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, C.S.; Son, H.S. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid.Biosci. Biotechnol. Biochem.2000,64, 2458–2461. [Google Scholar] [CrossRef] [PubMed]
- Hanh, H.; Tran, T.; Nguyen, M.C.; Le, H.T.; Nguyen, T.L.; Pham, T.B.; Chau, V.M.; Nguyen, H.N.; Nguyen, T.D. Inhibitors of α-glucosidase and α-amylase fromCyperus rotundus.Pharm. Biol.2014,52, 74–77. [Google Scholar] [CrossRef]
- Jhong, C.; Chia, Y. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.Biofactors2015,41, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Hahn, S.J.; Ahmad, A. Confirmation of potential herbicidal agents in hulls of rice,Oryza sativa.J. Chem. Ecol.2005,31, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Lucius, A.; Meyer, T.; Gonzalez De Mejia, E. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum).J. Agric. Food Chem.2011,59, 8923–8930. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the pure momilactones A and B are available from the authors. |
α-Amylase Inhibitory Assay (µg/mL) (IC50) | α-Glucosidase Inhibitory Assay (µg/mL) (IC50) | |
---|---|---|
MA | 266.68 ± 1.58c | 991.95 ± 0.96c |
MB | 146.85 ± 1.12b | 612.03 ± 0.39b |
Acarbose | 117.08 ± 0.85a | 2549.00 ± 5.15d |
Quercetin | - | 105.68 ± 0.09a |
Rice Organs | Momilactone A | Momilactone B |
---|---|---|
Grain | 2.07 ± 0.01d | 1.06 ± 0.01d |
Husk | 16.44 ± 0.09a | 9.24 ± 0.04b |
Leaf | 4.28 ± 0.03c | 12.73 ± 0.36a |
Root | 8.06 ± 0.13b | 5.69 ± 0.19c |
Two-Way ANOVA | ||
Momilactones | * | * |
Rice organs | * | * |
Interaction | * | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, N.V.; Tran, H.-D.; Xuan, T.D.; Ahmad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B Are ?-Amylase and ?-Glucosidase Inhibitors.Molecules2019,24, 482. https://doi.org/10.3390/molecules24030482
Quan NV, Tran H-D, Xuan TD, Ahmad A, Dat TD, Khanh TD, Teschke R. Momilactones A and B Are ?-Amylase and ?-Glucosidase Inhibitors.Molecules. 2019; 24(3):482. https://doi.org/10.3390/molecules24030482
Chicago/Turabian StyleQuan, Nguyen Van, Hoang-Dung Tran, Tran Dang Xuan, Ateeque Ahmad, Tran Dang Dat, Tran Dang Khanh, and Rolf Teschke. 2019. "Momilactones A and B Are ?-Amylase and ?-Glucosidase Inhibitors"Molecules 24, no. 3: 482. https://doi.org/10.3390/molecules24030482
APA StyleQuan, N. V., Tran, H.-D., Xuan, T. D., Ahmad, A., Dat, T. D., Khanh, T. D., & Teschke, R. (2019). Momilactones A and B Are ?-Amylase and ?-Glucosidase Inhibitors.Molecules,24(3), 482. https://doi.org/10.3390/molecules24030482