Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration
Abstract
:1. Introduction
2. Structure Design
2.1. Biological Structure Analysis
2.2. Bionic Structure Design
3. Theoretical Analysis
3.1. Kinematics
3.2. Gait Planning
4. Analytical Modeling
4.1. Foot Trajectory Simulation
4.2. Mobility Simulation
5. Experimental Tests
5.1. Manufacture
5.2. Mobility Tests
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stukes, S.; Allan, M.; Bajjalieh, G.; Deans, M.; Fong, T.; Hihn, J.; Utz, H. An Innovative Approach to Modeling VIPER Rover Software Life Cycle Cost. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021; pp. 1–16. [Google Scholar]
- Allender, E.J.; Cousins, C.R.; Gunn, M.D.; Caudill, C.M. Multiscale and Multispectral Characterization of Mineralogy with the ExoMars 2022 Rover Remote Sensing Payload.Earth Space Sci.2020,7, e2019EA000692. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Liu, B.; Ren, X.; Liu, J.; He, Z.; Zuo, W.; Zeng, X.; Xu, R.; Tan, X.; et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials.Nature2019,569, 378–382. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Tian, H.; Ji, L. Experimental verification of Zhurong mars rover.Exp. Technol. Manag.2021,38, 1–5. [Google Scholar]
- Almehisni, R.; Garg, P.; Wali, M. Thermal management system design and analysis of Rashid rover-emirates lunar mission. In Proceedings of the International Astronautical Congress (IAC 2021, C2), Dubai, United Arab Emirates, 25–29 October 2021. [Google Scholar]
- Nishida, S.-I.; Wakabayashi, S. Lunar surface exploration using mobile robots.Open Eng.2012,2, 156–163. [Google Scholar] [CrossRef]
- Medina, F.J.; Manzano, A.; Villacampa, A.; Ciska, M.; Herranz, R. Understanding Reduced Gravity Effects on Early Plant Development Before Attempting Life-Support Farming in the Moon and Mars.Front. Astron. Space Sci.2021,8, 148. [Google Scholar] [CrossRef]
- Ellery, A. Planetary Rovers Robotic Exploration of the Solar System. InAstronautical Engineering; Praxis Publishing: Chichester, UK, 2016. [Google Scholar]
- Chunri, P.; Guozheng, Y.; Zhiwu, W.; Hua, L.; Pingping, J. Design of a tracked robot and analysis of its obstacle-climbing.Mod. Manuf. Eng.2013,3, 24–27. [Google Scholar]
- Parness, A.; Abcouwer, N.; Fuller, C.; Wiltsie, N.; Nash, J.; Kennedy, B. LEMUR 3: A limbed climbing robot for extreme terrain mobility in space. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 5467–5473. [Google Scholar]
- Görner, M.; Wimböck, T.; Hirzinger, G. The DLR Crawler: Evaluation of gaits and control of an actively compliant six-legged walking robot.Ind. Robot. Int. J.2009,36, 344–351. [Google Scholar] [CrossRef]
- Xu, K.; Wang, S.; Yue, B.; Wang, J.; Guo, F.; Chen, Z. Obstacle-negotiation performance on challenging terrain for a parallel leg-wheeled robot.J. Mech. Sci. Technol.2020,34, 377–386. [Google Scholar] [CrossRef]
- SunSpiral, V.; Wheeler, D.; Chavez-Clemente, D.; Mittman, D. Development and field testing of the FootFall planning system for the ATHLETE robots.J. Field Robot.2012,29, 483–505. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Bell, J.F.; Bellutta, P.; Cabrol, N.A.; Catalano, J.G.; Cohen, J.; Crumpler, L.S.; Marais, D.J.D.; Estlin, T.A.; Farrand, W.H.; et al. Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater.J. Geophys. Res. Earth Surf.2010,115, E7. [Google Scholar] [CrossRef]
- Johnson, E.N.; Mooney, J.G. A Comparison of Automatic Nap-of-the-earth Guidance Strategies for Helicopters.J. Field Robot.2014,31, 637–653. [Google Scholar] [CrossRef]
- Paez, L.; Melo, K.; Thandiackal, R.; Ijspeert, A.J. Adaptive compliant foot design for salamander robots. In Proceedings of the RoboSoft 2019–2019 IEEE International Conference on Soft Robotics, Seoul, Korea, 14–18 April 2019; pp. 178–185. [Google Scholar]
- Bartsch, S.; Birnschein, T.; Cordes, F.; Kühn, D.; Kampmann, P.; Hilljegerdes, J.; Planthaber, S. SpaceClimber: Development of a six-legged climbing robot for space exploration. InISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics); VDE: Berlin, Germany, 2010; pp. 1265–1272. [Google Scholar]
- Zhang, R.; Pang, H.; Wan, H.; Han, D.; Li, G.; Wen, L. Design and Analysis of the Bionic Mechanical Foot with High Trafficability on Sand.Appl. Bionics Biomech.2020,2020, 3489142. [Google Scholar] [CrossRef] [PubMed]
- Roderick, W.R.T.; Cutkosky, M.R.; Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments.Sci. Robot.2021,6, eabj7562. [Google Scholar] [CrossRef]
- Yan, T.; Su, B.; Xu, W.; Qiu, T. Research on Bionic Foot Design and Climbing Strategy of Quadruped Robot.J. Physics: Conf. Ser.2021,1884, 012028. [Google Scholar] [CrossRef]
- Yanwei, L.; Xiang, H.; Limeng, W.; Tao, M.; Yan, L. Design and analysis of a bio-inspired biped wall-climbing robot with spines.Mech. Sci. Technol. Aerosp. Eng.2019,38, 1185–1190. [Google Scholar]
- Park, H.-W.; Park, S.; Kim, S. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3D running of MIT Cheetah 2. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation: Washington State Convention Center Seattle, Washington, DC, USA, 26–30 May 2015; pp. 5163–5170. [Google Scholar]
- Kitano, S.; Hirose, S.; Horigome, A.; Endo, G. TITAN-XIII: Sprawling-type quadruped robot with ability of fast and energy-efficient walking.ROBOMECH J.2016,3, 8. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Zhao, J.; Chen, J.; Yan, J. Development of a Bionic Hexapod Robot for Walking on Unstructured Terrain.J. Bionic Eng.2014,11, 176–187. [Google Scholar] [CrossRef]
- Li, C.; Hsieh, S.T.; Goldman, D.I. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).J. Exp. Biol.2012,215, 3231–3241. [Google Scholar] [CrossRef]
- Xu, K.; Ma, H.; Chen, J.; Zhang, W.; Deng, H.; Ding, X. Design and analysis of a metamorphic quadruped Robot. In Proceedings of the 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Delft, The Netherlands, 20–22 June 2018; p. 18060459. [Google Scholar]
- Folkertsma, G.A.; Kim, S.; Stramigioli, S. Parallel stiffness in a bounding quadruped with flexible spine. In Proceedings of the 2012 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2210–2215. [Google Scholar]
- Bhattacharya, S.; Singla, A.; Dholakiya, D.; Bhatnagar, S.; Amrutur, B.; Ghosal, A.; Kolathaya, S. Learning active spine behaviors for dynamic and efficient locomotion in quadruped robots. In Proceedings of the 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar]
- Takuma, T.; Ikeda, M.; Masuda, T. Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure. In Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010-Conference Proceedings 2010, Taipei, Taiwan, 18–22 October 2010; pp. 4940–4945. [Google Scholar]
- Yuan, S.; Zhou, Y.; Luo, C. Crawling gait planning based on foot trajectory optimization for quadruped Robot. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 1490–1495. [Google Scholar]
- Liu, Z.; Liu, H.; Luo, Z.; Zhang, X. Improvement on Monte Carlo method for robot workspace determination. InNongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery; Srust, Inc.: Tokyo, Japan, 2013; Volume 44, pp. 230–235. [Google Scholar]
- Chen, M.; Li, Q.; Wang, S.; Zhang, K.; Chen, H.; Zhang, Y. Single-Leg Structural Design and Foot Trajectory Planning for a Novel Bioinspired Quadruped Robot.Complexity2021,2021, 6627043. [Google Scholar] [CrossRef]
- Corke, P.I. Robotics Toolbox. 2002. Available online:http://www.petercorke.com/Robotics%20Toolbox.html (accessed on 20 May 2022).
- Hao, Q.; Wang, Z.; Wang, J.; Chen, G. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.Sensors2020,20, 4911. [Google Scholar] [CrossRef]
- Liu, C.; Xia, L.; Zhang, C.; Chen, Q. Multi-Layered CPG for Adaptive Walking of Quadruped Robots.J. Bionic Eng.2018,15, 341–355. [Google Scholar] [CrossRef]
- MSC Software “ADAMS 2013.2 Solver User Manual”. 2013. Available online:https://www.mscsoftware.com/page/adams (accessed on 20 May 2022).
- Gooch, J.W.ASTM D638; Springer: New York, NY, USA, 2011. [Google Scholar]
- Pan, Y.; Shang, H. Design of a Hopping Robot with Its Kinetics and Dynamics Analysis. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 411–416. [Google Scholar]
- Kößling, M.; Tajmar, M. Design and performance of a nano-Newton torsion balance.Rev. Sci. Instruments2022,93, 074502. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wei, Q.; Zhang, C.; An, H.L. Balance control of quadruped robot based on model predictive control.J. Physics: Conf. Ser.2020,1639, 012026. [Google Scholar] [CrossRef]
- Flores, P.; Ambrosio, J.; Claro, J.C.P.; Lankarani, H.M. Influence of the contact—impact force model on the dynamic response of multi-body systems.Proc. Inst. Mech. Eng. Part K J. Multi body Dyn.2006,220, 21–34. [Google Scholar] [CrossRef]
- Lankarani, H.M.; Nikravesh, P.E. Continuous contact force models for impact analysis in multibody systems.Nonlinear Dyn.1994,5, 193–207. [Google Scholar] [CrossRef]
- Asadi, F.; Khorram, M.; Moosavian, S.A.A. CPG-based gait planning of a quadruped robot for crossing obstacles. In Proceedings of the International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 216–222. [Google Scholar]
- Negri, S.P.; Basile, V.; Valori, M.; Gambino, B.; Fassi, I.; Tosatti, L.M. A modular mobile robotic architecture for defects detection and repair in narrow tunnels of CFRP aeronautic components.Robot. Comput. Manuf.2018,55, 109–128. [Google Scholar] [CrossRef]
- Raspberrypi. Available online:www.raspberrypi.com (accessed on 20 April 2022).
- Hutter, M.; Gehring, C.; Hoepflinger, M.H.; Bloesch, M.; Siegwart, R. Walking and running with StarlETH. In Proceedings of the International Symposium on Adaptive Motion of Animals and Machines (AMAM), Darmstadt, Germany, 11–14 March 2013. [Google Scholar]
- Lipeng, W.; Junzheng, W.; Shoukun, W. Strategy of foot trajectory generation for hydraulic quadruped robots gait planning.J. Mech. Eng.2013,20121115, 39–44. [Google Scholar]
- Zhang, C.; An, H.; Wei, Q.; Ma, H. Foot trajectory planning method with adjustable parameters for complex environment. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 1151–1157. [Google Scholar]
- Inotsume, H.; Moreland, S.; Skonieczny, K.; Wettergreen, D. Parametric study and design guidelines for rigid wheels for planetary rovers.J. Terramechanics2019,85, 39–57. [Google Scholar] [CrossRef]
- Kolvenbach, H.; Hampp, E.; Barton, P.; Zenkl, R.; Hutter, M. Towards jumping locomotion for quadruped robots on the Moon. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019; pp. 5459–5466. [Google Scholar]
- Niksirat, P.; Daca, A.; Skonieczny, K. The effects of reduced-gravity on planetary rover mobility.Int. J. Robot. Res.2020,39, 797–811. [Google Scholar] [CrossRef]
- Yao, L.; Yu, H.; Lu, Z. Design and driving model for the quadruped robot: An elucidating draft.Adv. Mech. Eng.2021,13, 16878140211009035. [Google Scholar] [CrossRef]
- Morgan, A.B.; Kumar, J.; Barklay, C.D.; Kramer, D.P. Non-nuclear based thermoelectric + battery system concepts for space power systems. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–6. [Google Scholar]
Link | Angle | Torsional Angle | Distance | Length |
---|---|---|---|---|
n | ||||
1 | 90° | 0 | L1 | |
2 | 0° | 0 | L2 | |
3 | 0° | 0 | L3 |
Torsional Spring Stiffness | Torsional Spring Damping | Resin Density | Resin Young’s Modulus | Resin Poisson Ratio |
---|---|---|---|---|
mm/° | s/° | 1150 Kg/m3 | 2.65 GPa | 0.42 |
Stiffness | Force Index | Damping | Penetration Depth | Static Friction Coefficient | Dynamic Friction Coefficient | Static Friction Velocity | Dynamic Friction Velocity |
---|---|---|---|---|---|---|---|
1150 N/mm | 2 | s/mm | 0.1 mm | 0.8 | 0.6 | 0.1 mm/s | 10 mm/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Qiao, L.; Wang, B.; Richter, L.; Ji, A. Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration.Machines2022,10, 827. https://doi.org/10.3390/machines10100827
Chen G, Qiao L, Wang B, Richter L, Ji A. Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration.Machines. 2022; 10(10):827. https://doi.org/10.3390/machines10100827
Chicago/Turabian StyleChen, Guangming, Long Qiao, Bingcheng Wang, Lutz Richter, and Aihong Ji. 2022. "Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration"Machines 10, no. 10: 827. https://doi.org/10.3390/machines10100827
APA StyleChen, G., Qiao, L., Wang, B., Richter, L., & Ji, A. (2022). Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration.Machines,10(10), 827. https://doi.org/10.3390/machines10100827