Movatterモバイル変換


[0]ホーム

URL:


Skip to Main Content
American Society of Mechanical Engineers: Digital Collection
J. Comput. Nonlinear Dynam.
header search
    Skip Nav Destination
    Article navigation
    Research-Article

    Atangana–Baleanu Semilinear Fractional Differential Inclusions With Infinite Delay: Existence and Approximate Controllability

    W. Kavitha Williams,
    W. Kavitha Williams
    Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
    ,
    Vellore, Tamilnadu 632 014,
    India
    Search for other works by this author on:
    V. Vijayakumar,
    V. Vijayakumar
    Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
    ,
    Vellore, Tamilnadu 632 014,
    India
    Search for other works by this author on:
    Kottakkaran Sooppy Nisar,
    Kottakkaran Sooppy Nisar
    Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University
    ,
    Wadi Aldawaser 11991,
    Saudi Arabia
    1Corresponding author. e-mail: [email protected]
    Search for other works by this author on:
    Anurag Shukla
    Anurag Shukla
    Department of Applied Science, Rajkiya Engineering College, Kannauj
    ,
    Kannauj 209732,
    India
    Search for other works by this author on:
    Crossmark: Check for Updates
    W. Kavitha Williams
    Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
    ,
    Vellore, Tamilnadu 632 014,
    India
    V. Vijayakumar
    Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
    ,
    Vellore, Tamilnadu 632 014,
    India
    Kottakkaran Sooppy Nisar
    Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University
    ,
    Wadi Aldawaser 11991,
    Saudi Arabia
    Anurag Shukla
    Department of Applied Science, Rajkiya Engineering College, Kannauj
    ,
    Kannauj 209732,
    India
    1Corresponding author. e-mail: [email protected]
    J. Comput. Nonlinear Dynam. Feb 2023, 18(2): 021005 (19 pages)
    Published Online: December 20, 2022
    Article history
    Received:
    April 1, 2022
    Revised:
    November 14, 2022
    Published:
    December 20, 2022
    Citation

    Williams, W. K., Vijayakumar, V., Nisar, K. S., and Shukla, A. (December 20, 2022). "Atangana–Baleanu Semilinear Fractional Differential Inclusions With Infinite Delay: Existence and Approximate Controllability." ASME.J. Comput. Nonlinear Dynam. February 2023; 18(2): 021005.https://doi.org/10.1115/1.4056357

    Download citation file:

    toolbar search
    toolbar search

      Abstract

      The main focus of this paper is centered around approximate controllability results of Atangana–Baleanu fractional differential systems with infinite delay. Using principles and ideas from the theory of multivalued maps, fractional calculus, and Bohnenblust–Karlin fixed point techniques, the key findings are established. We begin by emphasizing the existence of mild solutions, and then demonstrate the approximate controllability of the Atangana–Baleanu fractional control system. We then apply our findings to the theory of the neutral system.

      References

      1.
      Francesco
      ,
      M.
      ,
      2010
      ,
      Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
      ,
      World Scientific
      , Singapore.
      2.
      Mainardi
      ,
      F.
      ,
      1996
      , “
      Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena
      ,”
      Chaos Solitons Fract.
      ,
      7
      (
      9
      ), pp.
      1461
      1477
      .10.1016/0960-0779(95)00125-5
      3.
      Richard
      ,
      H.
      ,
      2014
      ,
      Fractional Calculus: An Introduction for Physicists
      ,
      World Scientific
      , Singapore.
      4.
      Ganji
      ,
      R. M.
      ,
      Jafari
      ,
      H.
      , and
      Baleanu
      ,
      D.
      ,
      2020
      , “
      A New Approach for Solving Multivariable Orders Differential Equations With Mittag-Leffler Kernel
      ,”
      Chaos Solitons Fract.
      ,
      130
      , p.
      109405
      .10.1016/j.chaos.2019.109405
      5.
      Atangana
      ,
      A.
      , and
      Baleanu
      ,
      D.
      ,
      2016
      , “
      New Fractional Derivatives With Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model
      ,”
      Appl. Heat Transfer Model
      ,
      20
      (
      2
      ), pp.
      763
      769
      .10.2298/TSCI160111018A
      6.
      Atangana
      ,
      A.
      , and
      Alqahtani
      ,
      R. T.
      ,
      2018
      , “
      New Numerical Method and Application to Keller-Segel Model With Fractional Order Derivative
      ,”
      Chaos Solitons Fract.
      ,
      116
      , pp.
      14
      21
      .10.1016/j.chaos.2018.09.013
      7.
      Wang
      ,
      J. R.
      , and
      Zhang
      ,
      Y. R.
      ,
      2015
      , “
      Nonlocal Initial Value Problems for Differential Equation With Hilfer Fractional Derivative
      ,”
      Appl. Math. Comput.
      ,
      266
      , pp.
      850
      859
      .10.1016/j.amc.2015.05.144
      8.
      Yang
      ,
      M.
      , and
      Wang
      ,
      Q.
      ,
      2017
      , “
      Approximate Controllability of Hilfer Fractional Differential Inclusions With Nonlocal Conditions
      ,”
      Math. Methods Appl. Sci.
      ,
      40
      (
      4
      ), pp.
      1126
      1138
      .10.1002/mma.4040
      9.
      Jafari
      ,
      H.
      ,
      Tuan
      ,
      N. A.
      , and
      Ganji
      ,
      R. M.
      ,
      2021
      , “
      A New Numerical Scheme for Solving Pantograph Type Nonlinear Fractional Integro-Differential Equations
      ,”
      J. King Saud Univ. Sci.
      ,
      33
      (
      1
      ), p.
      101185
      .10.1016/j.jksus.2020.08.029
      10.
      Jafari
      ,
      H.
      ,
      Ganji
      ,
      R. M.
      ,
      Sayevand
      ,
      K.
      , and
      Baleanu
      ,
      D.
      ,
      2022
      , “
      A Numerical Approach for Solving Fractional Optimal Control Problems With Mittag-Leffler Kernel
      ,”
      ASME J. Vib. Control
      ,
      28
      (
      19–20
      ), pp.
      2596
      2606
      .10.1177/10775463211016967
      11.
      Sadeghi
      ,
      S.
      ,
      Jafari
      ,
      H.
      , and
      Nemati
      ,
      S.
      ,
      2020
      , “
      Operational Matrix for Atangana-Baleanu Derivative Based on Genocchi Polynomials for Solving FDEs
      ,”
      Chaos Solitons Fract.
      ,
      135
      , p.
      109736
      .10.1016/j.chaos.2020.109736
      12.
      Dineshkumar
      ,
      C.
      ,
      Udhayakumar
      ,
      R.
      ,
      Vijayakumar
      ,
      V.
      ,
      Nisar
      ,
      K. S.
      , and
      Shukla
      ,
      A.
      ,
      2022
      , “
      A Note Concerning to Approximate Controllability of Atangana-Baleanu Fractional Neutral Stochastic Systems With Infinite Delay
      ,”
      Chaos Solitons Fract.
      ,
      157
      , p.
      111916
      .10.1016/j.chaos.2022.111916
      13.
      Dineshkumar
      ,
      C.
      ,
      Udhayakumar
      ,
      R.
      ,
      Vijayakumar
      ,
      V.
      ,
      Nisar
      ,
      K. S.
      ,
      Shukla
      ,
      A.
      ,
      Abdel-Aty
      ,
      A. H.
      ,
      Mahmoud
      ,
      M.
      , and
      Mahmoud
      ,
      E.
      ,
      2022
      , “
      A Note on Existence and Approximate Controllability Outcomes of Atangana-Baleanu Neutral Fractional Stochastic Hemivariational Inequality
      ,”
      Results Phys.
      ,
      38
      , p.
      105647
      .10.1016/j.rinp.2022.105647
      14.
      Ma
      ,
      Y. K.
      ,
      Vijayakumar
      ,
      V.
      ,
      Shukla
      ,
      A.
      ,
      Nisar
      ,
      K. S.
      ,
      Thilagavathi
      ,
      K.
      ,
      Nashine
      ,
      H. K.
      ,
      Singh
      ,
      A. K.
      , and
      Zakarya
      ,
      M.
      ,
      2023
      , “
      Discussion on the Existence of Mild Solution for Fractional Derivative by Mittag-Leffler Kernel to Fractional Stochastic Neutral Differential Inclusions
      ,”
      Alexandria Eng. J.
      ,
      63
      , pp.
      271
      282
      .10.1016/j.aej.2022.08.006
      15.
      Aimene
      ,
      D.
      ,
      Baleanu
      ,
      D.
      , and
      Seba
      ,
      D.
      ,
      2019
      , “
      Controllability of Semilinear Impulsive Atangana-Baleanu Fractional Differential Equations With Delay
      ,”
      Chaos Solitons Fract.
      ,
      128
      , pp.
      51
      57
      .10.1016/j.chaos.2019.07.027
      16.
      Jarad
      ,
      F.
      ,
      Abdeljawad
      ,
      T.
      , and
      Hammouch
      ,
      Z.
      ,
      2018
      , “
      On a Class of Ordinary Differential Equations in the Frame of Atangana-Baleanu Fractional Derivative
      ,”
      Chaos Solitons Fract.
      ,
      117
      , pp.
      16
      20
      .10.1016/j.chaos.2018.10.006
      17.
      Kumar
      ,
      A.
      , and
      Pandey
      ,
      D. N.
      ,
      2020
      , “
      Existence of Mild Solution of Atangana-Baleanu Fractional Differential Equations With Non-Instantaneous Impulses and With Non-Local Conditions
      ,”
      Chaos Solitons Fract.
      ,
      132
      , p.
      109551
      .10.1016/j.chaos.2019.109551
      18.
      Ravichandran
      ,
      C.
      ,
      Logeswari
      ,
      K.
      , and
      Jarad
      ,
      F.
      ,
      2019
      , “
      New Results on Existence in the Frame-Work of Atangana-Baleanu Derivative for FractionalIntegro-Differential Equations
      ,”
      Chaos Solitons Fract.
      ,
      125
      , pp.
      194
      200
      .10.1016/j.chaos.2019.05.014
      19.
      Williams
      ,
      W. K.
      ,
      Vijayakumar
      ,
      V.
      ,
      Shukla
      ,
      A.
      , and
      Nisar
      ,
      K. S.
      ,
      2022
      , “
      An Analysis on Approximate Controllability of Atangana-Baleanu Fractional Semilinear Control Systems
      ,”
      Int. J. Nonlinear Sci. Numer. Simul.
      , pp.
      1
      12
      .10.1515/ijnsns-2021-0371
      20.
      Podlubny
      ,
      I.
      ,
      1999
      , “
      An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
      ,”
      Math. Sci. Eng.
      ,
      198
      , p.
      366
      .
      21.
      Pazy
      ,
      A.
      ,
      1983
      ,
      Semigroups of Linear Operators and Applications to Partial Differential Equations
      , Applied Mathematical Sciences,
      Springer
      ,
      New York
      , Vol.
      44
      .
      22.
      Mahmudov
      ,
      N. I.
      , and
      Denker
      ,
      A.
      ,
      2000
      , “
      On Controllability of Linear Stochastic Systems
      ,”
      Int. J. Control
      ,
      73
      (
      2
      ), pp.
      144
      151
      .10.1080/002071700219849
      23.
      Cakan
      ,
      U.
      , and
      Ozdemir
      ,
      I.
      ,
      2014
      , “
      An Application of Krasnoselskii Fixed Point Theorem to Some Nonlinear Functional Integral Equations
      ,”
      Nevsehir Bilim Teknoloji Derg.
      ,
      3
      (
      2
      ), pp.
      66
      73
      .
      24.
      Wang
      ,
      J.
      , and
      Zhou
      ,
      Y.
      ,
      2011
      , “
      Existence and Controllability Results for Fractional Semilinear Differential Inclusions
      ,”
      Nonlinear Anal.
      ,
      12
      (
      6
      ), pp.
      3642
      3653
      .10.1016/j.nonrwa.2011.06.021
      25.
      Shu
      ,
      X.-B.
      ,
      Lai
      ,
      Y.
      , and
      Chen
      ,
      Y.
      ,
      2011
      , “
      The Existence of Mild Solutions for Impulsive Fractional Partial Differential Equations
      ,”
      Nonlinear Anal.
      ,
      74
      (
      5
      ), pp.
      2003
      2011
      .10.1016/j.na.2010.11.007
      Copyright © 2023 by ASME
      You do not currently have access to this content.
      133Views
      12Web of Science
      11Crossref

      Related Chapters

      Equivalent Infinitesimal Substitution Solves the Properties of Limit of Function
      International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
      Generalized Theorems for the Monotonicity Theorem of Functions
      International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
      Often Forgotten Programming 101
      Managing Systems Development 101: A Guide to Designing Effective Commercial Products & Systems for Engineers & Their Bosses∕CEOs
      Journal Footer
      • Online ISSN 1555-1423
      • Print ISSN 1555-1415
      • Crossref Logo
      • Crossref Open Funder Registry Logo
      • Crossref Open Cited-By Logo
      • Crossref Crossmark Logo
      • Crossref Similarity Check Logo
      • Chorus Logo
      • Counter Logo
      • Cope Logo
      • STM Logo
      Copyright © 2025 The American Society of Mechanical Engineers
      Close Modal
      Close Modal
      This Feature Is Available To Subscribers Only

      Sign In orCreate an Account

      Close Modal
      Close Modal
      This site uses cookies. By continuing to use our website, you are agreeing toour privacy policy.
      Accept

      [8]ページ先頭

      ©2009-2025 Movatter.jp