Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Geoscience
  • Article
  • Published:

Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy

Nature Geosciencevolume 12pages192–199 (2019)Cite this article

Subjects

AnAuthor Correction to this article was published on 05 March 2019

This article has beenupdated

Abstract

A magnitude 7.5 earthquake hit the city of Palu in Sulawesi, Indonesia on 28 September 2018 at 10:02:43 (coordinated universal time). It was followed a few minutes later by a 4–7-m-high tsunami. Palu is situated in a narrow pull-apart basin surrounded by high mountains of up to 2,000 m altitude. This morphology has been created by a releasing bend in the Palu-Koro fault, a rapidly moving left-lateral strike-slip fault. Here we present observations derived from optical and radar satellite imagery that constrain the ground surface displacements associated with the earthquake in great detail. Mapping of the main rupture and associated secondary structures shows that the slip initiated on a structurally complex and previously unknown fault to the north, extended southwards over 180 km and passed through two major releasing bends. The 30 km section of the rupture south of Palu city is extremely linear, and slightly offset from the mapped geological fault at the surface. This part of the rupture accommodates a large and smooth surface slip of 4–7 m, with no shallow slip deficit. Almost no aftershock seismicity was recorded from this section of the fault. As these characteristics are similar to those from known supershear segments, we conclude that the Palu earthquake probably ruptured this segment at supershear velocities.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Setting and measured surface displacements associated withMw 7.5 Palu earthquake.
Fig. 2: Detailed features of the Palu rupture.
Fig. 3: Characteristics of surface slip for the Palu rupture.
Fig. 4:Model of slip distribution on the fault.

Similar content being viewed by others

Code availability

Synthetic aperture radar data were processed using GMTSAR software, freely available fromhttps://topex.ucsd.edu/gmtsar/. Optical satellite images were mosaicked using the Geospatial Data Abstraction Library (http://gdal.org) and then correlated using the COSI-Corr software package available atwww.tectonics.caltech.edu/slip_history/spot_coseis/download_software.html. Deformation generated by a static earthquake source was modelled using Okada57 equations implemented in the disloc program (www.physics.hmc.edu/GL/disloc/disloc.c).

Data availability

The data sets generated during the current study (displacement fields from Landsat-8, Sentinel-2 and WorldView image correlation and from the ALOS-2 interferogram, as well as the static slip distribution) are available from the corresponding author upon request. Raw satellite optical imagery was made freely available by ESA (Sentinel-2,https://scihub.copernicus.eu/dhus/#/home), USGS (Landsat-8,https://earthexplorer.usgs.gov/) and DigitalGlobe (WorldView,www.digitalglobe.com/opendata/indonesia-earthquake-tsunami/). Raw ALOS-2 data availability is restricted to PI investigation atwww.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm.

Change history

  • 05 March 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Cipta, A. et al. inGeohazards in Indonesia: Earth Science for Disaster Risk Reduction (eds Cummins, P. R. & Meilano, I.) 133–152 (Geological Society Special Publications Vol. 441, Geological Society, London, 2017).

  2. Prasetya, G. S., de Lange, W. P. & Healy, T. R.The Makassar Strait tsunamigenic region, Indonesia.Nat. Hazards24, 295–307 (2001).

    Article  Google Scholar 

  3. Puntodewo, S. S. O. et al. GPS measurements of crustal deformation within the Pacific–Australia Plate boundary zone in Irian Jaya, Indonesia.Tectonophysics237, 141–153 (1994).

    Article  Google Scholar 

  4. Rangin, C. et al. Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary; the Philippines and eastern Indonesia.Geophys. J. Int.139, 296–316 (1999).

    Article  Google Scholar 

  5. Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations.J. Asian Earth Sci.20, 353–431 (2002).

    Article  Google Scholar 

  6. Wallace, L. M., McCaffrey, R., Beavan, J. & Ellis, S. Rapid microplate rotations and backarc rifting at the transition between collision and subduction.Geology33, 857–860 (2005).

    Article  Google Scholar 

  7. Socquet, A. et al. Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data.J. Geophys. Res.111, B08409 (2006).

    Google Scholar 

  8. Bellier, O. et al. High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia).Terra Nova13, 463–470 (2001).

    Article  Google Scholar 

  9. Watkinson, I. M. & Hall, R. inGeohazards in Indonesia: Earth Science for Disaster Risk Reduction (eds Cummins, P. R. & Meilano, I.) 71–120 (Geological Society Special Publications, Vol. 441, Geological Society, London, 2017).

  10. Vigny, C. et al. Migration of seismicity and earthquake interactions monitored by GPS in SE Asia triple junction: Sulawesi, Indonesia.J. Geophys. Res.107, 2231 (2002).

    Article  Google Scholar 

  11. Simons, W. et al. A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries.J. Geophys. Res.112, B06420 (2007).

    Article  Google Scholar 

  12. Walpersdorf, A., Vigny, C., Manurung, P., Subarya, C. & Sutisna, S. Determining the Sula Block kinematics in the triple junction area in Indonesia by GPS.Geophys. J. Int.135, 351–361 (1998).

    Article  Google Scholar 

  13. Silver, E. A., McCaffrey, R. & Smith, R. B. Collision, rotation, and the initiation of subduction in the evolution of Sulawesi, Indonesia.J. Geophys. Res. Solid Earth88, 9407–9418 (1983).

    Article  Google Scholar 

  14. Bellier O. et al. inGEODYSSEA Final Report GFZ Scientific Technical Report 98/14 (eds Wilson, P. & Michel, G. W.) 276–312 (GeoForshingsZentrum, 1988).

  15. Walpersdorf, A., Vigny, C., Subarya, C. & Manurung, P. Monitoring of the Palu-Koro Fault (Sulawesi) by GPS.Geophys. Res. Lett.25, 2313–2316 (1998).

    Article  Google Scholar 

  16. Stevens, C. et al. Rapid rotations about a vertical axis in a collisional setting revealed by the Palu Fault, Sulawesi, Indonesia.Geophys. Res. Lett.26, 2677–2680 (1999).

    Article  Google Scholar 

  17. Mw 7.5 Palu earthquake, Indonesia.US Geological Surveyhttps://earthquake.usgs.gov/earthquakes/eventpage/us1000h3p4/executive#executive (2018).

  18. Mw 7.5 earthquake, Sulawesi 2018/09/28 10:02:43 UTC.Geoscope Observatoryhttp://geoscope.ipgp.fr/index.php/en/catalog/earthquake-description?seis=us1000h3p4 (2018).

  19. Bao, H. et al. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake.Nat. Geosci.https://doi.org/10.1038/s41561-018-0297-z (2019).

  20. Bouchon, M. & Karabulut, H. The aftershock signature of supershear earthquakes.Science320, 1323–1325 (2008).

    Article  Google Scholar 

  21. Leprince, S., Barbot, S., Ayoub, F. & Avouac, J. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements.IEEE Trans. Geosci. Remote Sens.45, 1529–1558 (2007).

    Article  Google Scholar 

  22. Emre, Ö., Awata, Y., & Duman, T. Y. (eds)Surface Rupture Associated with the 17 August 1999 Izmit Earthquake (General Directorate of Mineral Research and Exploration, Ankara, 2003).

  23. Barka, A. et al. The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault.Bull. Seismol. Soc. Am.92, 43–60 (2002).

    Article  Google Scholar 

  24. Michel, R. & Avouac, J. P. Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images.J. Geophys. Res. Solid Earth107, 2062 (2002).

  25. Klinger, Y. et al. High-resolution satellite imagery mapping of the surface rupture and slip distribution of theMw 7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China.Bull. Seismol. Soc. Am.95, 1970–1987 (2005).

    Article  Google Scholar 

  26. King, G., Klinger, Y., Bowman, D. & Tapponnier, P. Slip-partitioned surface breaks for theMw 7.8 2001 Kokoxili earthquake, China.Bull. Seismol. Soc. Am.95, 731–738 (2005).

    Article  Google Scholar 

  27. Bouchon, M. et al. Faulting characteristics of supershear earthquakes.Tectonophysics493, 244–253 (2010).

    Article  Google Scholar 

  28. Robinson, D. P., Das, S. & Searle, M. P. Earthquake fault superhighways.Tectonophysics493, 236–243 (2010).

    Article  Google Scholar 

  29. Andrews, D. J. & Ben-Zion, Y. Wrinkle-like slip pulse on a fault between different materials.J. Geophys. Res.102, 553–571 (1997).

    Article  Google Scholar 

  30. Milliner, C. W. et al. Quantifying near-field and off-fault deformation patterns of the 1992Mw 7.3 Landers earthquake.Geochem. Geophys. Geosyst.16, 1577–1598 (2015).

    Article  Google Scholar 

  31. Boore, D. M. A note on the effect of simple topography on seismic SH waves.Bull. Seismol. Soc. Am.62, 275–284 (1972).

    Google Scholar 

  32. Ma, S. A physical model for widespread near-surface and fault zone damage induced by earthquakes.Geochem. Geophys. Geosyst.9, Q11009 (2008).

    Article  Google Scholar 

  33. Xu, X. et al. Refining the shallow slip deficit.Geophys. J. Int.204, 1867–1886 (2016).

    Article  Google Scholar 

  34. Fialko, Y. Probing the mechanical properties of seismically active crust with space geodesy: study of the coseismic deformation due to the 1992Mw 7.3 Landers (southern California) earthquake.J. Geophys. Res.109, B03307 (2004).

    Google Scholar 

  35. Gombert, B. et al. Revisiting the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault damage.Geophys. J. Int.212, 839–852 (2018).

    Article  Google Scholar 

  36. Klinger, Y. Relation between continental strike-slip earthquake segmentation and thickness of the crust.J. Geophys. Res.115, B07306 (2010).

    Article  Google Scholar 

  37. Fialko, Y., Sandwell, D., Simons, M. & Rosen, P. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit.Nature435, 295–299 (2005).

    Article  Google Scholar 

  38. Stirling, M. W., Wesnousky, S. G. & Shimazaki, K. Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey.Geophys. J. Int.124, 833–868 (1996).

    Article  Google Scholar 

  39. Brodsky, E., Gilchrist, J., Sagy, A. & Collettini, C. Faults smooth gradually as a function of slip.Earth Planet. Sci. Lett.302, 185–193 (2011).

    Article  Google Scholar 

  40. Dolan, J. F. & Haravitch, B. D. How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation.Earth Planet. Sci. Lett.388, 38–47 (2014).

    Article  Google Scholar 

  41. Hooper, A. et al. Importance of horizontal seafloor motion on tsunami height for the 2011Mw = 9.0 Tohoku-Oki earthquake.Earth Planet. Sci. Lett.361, 469–479 (2013).

    Article  Google Scholar 

  42. Carvajal, M. et al. The extraordinary tsunami of Palu 2018 and its implications for Chile. InXV Congreso Geologico Chileno (2018).

  43. Schäfer, A. M. & Wenzel, F. Tsupy: computational robustness in tsunami hazard modelling.Comp. Geosci.102, 148–157 (2017).

    Article  Google Scholar 

  44. Bouchon, M. & Vallée, M. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake.Science301, 824–826 (2003).

    Article  Google Scholar 

  45. Dunham, E. M. & Archuleta, R. J. Evidence for a supershear transient during the 2002 Denali fault earthquake.Bull. Seismol. Soc. Am.94, S256–S268 (2004).

    Article  Google Scholar 

  46. Konca, A. O., Leprince, S., Avouac, J. P. & Helmberger, D. V. Rupture process of the 1999Mw 7.1 Duzce earthquake from joint analysis of SPOT, GPS, InSAR, strong-motion, and teleseismic data: a supershear rupture with variable rupture velocity.Bull. Seismol. Soc. Am.100, 267–288 (2010).

    Article  Google Scholar 

  47. Lassere, C. et al. Coseismic deformation of the 2001Mw = 7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry.J. Geophys. Res. Solid Earth110, B12408 (2005).

    Article  Google Scholar 

  48. Ozacar, A. A. & Beck, S. L. The 2002 Denali fault and 2001 Kunlun fault earthquakes: complex rupture processes of two large strike-slip events.Bull. Seismol. Soc. Am.94, S278–S292 (2004).

    Article  Google Scholar 

  49. King, G. & Nábělek, J. Role of fault bends in the initiation and termination of earthquake rupture.Science228, 984–987 (1985).

    Article  Google Scholar 

  50. Sandwell, D., Mellors, R., Tong, X., Wei, M. & Wessel, P. Open radar interferometry software for mapping surface deformation.Eos Trans. AGU92, 28 (2011).

    Article  Google Scholar 

  51. Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P.GMTSAR: An InSAR Processing System Based on Generic Mapping Tools Scripps Institution of Oceanography Technical Report (2011).

  52. Tadono, T. et al. Precise global DEM generation by ALOS PRISM.ISPRS Ann. Photogram Remote Sensing Spatial Inf. Sci.II-4, 71–76 (2014).

    Article  Google Scholar 

  53. Chen, C. W. & Zebker, H. A. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models.IEEE Trans. Geosci. Remote Sensing40, 1709–1719 (2002).

    Article  Google Scholar 

  54. GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction (Open Source Geospatial Foundation).

  55. Ayoub, F., Leprince, L. & Avouac, J.-P.User’s Guide to COSI-CORR: Co-registration of Optically Sensed Images and Correlation (California Institute of Technology, 2015).

  56. Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data.Earth Space Sci.5, 537–548 (2018).

    Article  Google Scholar 

  57. Okada, Y. Surface deformation due to shear and tensile faults in a half-space.Bull. Seismol. Soc. Am.75, 1135–1154 (1985).

    Google Scholar 

  58. Grandin, R. et al. The September 2005 Wal’is-Dabbahu rifting event, Afar (Ethiopia): constraints provided by geodetic data.J. Geophys. Res.114, B08404 (2009).

    Article  Google Scholar 

  59. Tiranda, H.Tectonostratigraphic Evolution of Offshore NW Sulawesi with Implications for the Hydrocarbon Prospectivity. MSc thesis, Univ. London (2017).

  60. Loveless, J. P. & Meade, B. J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011Mw= 9.0 Tohoku Oki earthquake.Geophys. Res. Lett.38, L17306 (2011).

    Article  Google Scholar 

  61. Jonsson, S., Zebker, H., Segall, P. & Amelung, F. Fault slip distribution of the 1999Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements.Bull. Seismol. Soc. Am.92, 1377–1389 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Our first thoughts go to the population of Sulawesi and to the victims of this earthquake. Satellite optical imagery has been made freely available by ESA (Sentinel-2,https://scihub.copernicus.eu/dhus/#/home), USGS (Landsat-8,https://earthexplorer.usgs.gov/) and DigitalGlobe (WorldView,www.digitalglobe.com/opendata/indonesia-earthquake-tsunami/). We thank JAXA for providing ALOS-2 data under PI investigation no. 3328 (ALOS 6th RA) and the AW3D30 digital elevation model. We also thank the contributors to GMT and GMTSAR opensource software.

Author information

Authors and Affiliations

  1. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France

    Anne Socquet, James Hollingsworth, Erwan Pathier & Michel Bouchon

Authors
  1. Anne Socquet

    You can also search for this author inPubMed Google Scholar

  2. James Hollingsworth

    You can also search for this author inPubMed Google Scholar

  3. Erwan Pathier

    You can also search for this author inPubMed Google Scholar

  4. Michel Bouchon

    You can also search for this author inPubMed Google Scholar

Contributions

J.H. processed and analysed the image correlation data. E.P. processed and analysed ALOS-2 interferograms. A.S. coordinated the study, analysed the displacement maps and inverted for coseismic slip distributions. M.B. cross-examined the observations and results. All the authors discussed the content of the paper and shared the writing.

Corresponding author

Correspondence toAnne Socquet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Socquet, A., Hollingsworth, J., Pathier, E.et al. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy.Nat. Geosci.12, 192–199 (2019). https://doi.org/10.1038/s41561-018-0296-0

Download citation

Access through your institution
Buy or subscribe

Associated content

Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake

  • Han Bao
  • Jean-Paul Ampuero
  • Hui Huang
Nature GeoscienceArticle

Supershear tsunami disaster

  • P. Martin Mai
Nature GeoscienceNews & Views

Tsunamis revisited

Nature GeoscienceEditorial

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp