Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Cancer
  • Timeline
  • Published:

Paul Ehrlich's magic bullet concept: 100 years of progress

Nature Reviews Cancervolume 8pages473–480 (2008)Cite this article

Abstract

Exceptional advances in molecular biology and genetic research have expedited cancer drug development tremendously. The declared paradigm is the development of 'personalized and tailored drugs' that precisely target the specific molecular defects of a cancer patient. It is therefore appropriate to revisit the intellectual foundations of the development of such agents, as many have shown great clinical success. One hundred years ago, Paul Ehrlich, the founder of chemotherapy, received the Nobel Prize for Physiology or Medicine. His postulate of creating 'magic bullets' for use in the fight against human diseases inspired generations of scientists to devise powerful molecular cancer therapeutics.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paul Ehrlich in his office.

References

  1. Ehrlich, P.Beiträge zur Theorie und Praxis der histologischen Färbung. Thesis, Univ. Leipzig (1878) (in German).

    Google Scholar 

  2. Ehrlich, P. Aus Theorie und Praxis der Chemotherapie.Folia Serologica7, 697–714 (1911) (in German).

    CAS  Google Scholar 

  3. Bäumler, E. Paul Ehrlich. Forscher für das Leben. 3rd edn (Minerva, Frankfurt am Main, 1997) (in German).

  4. Ehrlich, P. Die Wertbemessung des Diphterie-heilserums und deren theoretische Grundlagen.Klinisches Jahrbuch6, 299–326 (1897) (in German).

    Google Scholar 

  5. Ehrlich, P. Croonian lecture: on immunity with special reference to cell life.Proc. Roy. Soc. London66, 424–448 (1900).

    Article CAS  Google Scholar 

  6. Ehrlich, P. & Morgenroth, J. Die Seitenkettentheorie der Immunität. Anleitung zu hygienischen Untersuchungen: nach den im Hygienischen Institut der königl. Ludwig-Maximilians-Universität zu München üblichen Methoden zusammengestellt, 3 Aufl.3, 381–394 (1902) (in German).

  7. Ehrlich, P. & Morgenroth, J. Wirkung und Entstehung der aktiven Stoffe im Serum nach der Seiten-kettentheorie.Handbuch der pathogenen Mikroorganismen1, 430–451 (1904) (in German).

    Google Scholar 

  8. Ehrlich, P. Partial cell functions: Nobel lecture, December 11, 1908 inPhysiology or Medicine: including presentation speeches and laureates' biographies 1901–1921 (Elsevier Publishing, Amsterdam, 1967).

    Google Scholar 

  9. Ehrlich, P. & Morgenroth, J. Ueber Haemolysine: dritte Mittheilung.Berliner klinische Wochenschrift37, 453–458 (1900) (in German).

    Google Scholar 

  10. Ehrlich, P. & Sachs, H. Ueber den Mechanismus der Antiamboceptorwirkung.Berliner klinische Wochenschrift 557–558 (1905) (in German).

  11. Ehrlich, P. Chemotherapeutische Trypanosomen-Studien.Berliner klinische Wochenschrift44, 233–236 (1907) (in German).

    CAS  Google Scholar 

  12. Ehrlich, P. Die Behandlung der Syphilis mit dem Ehrlichschen Präparat 606.Deutsche medizinische Wochenschrift 1893–1896 (1910) (in German).

  13. Fleming, A., Voureka, A., Kramer, I. R. & Hughes, W. H. The morphology and motility ofProteus vulgaris and other organisms cultured in the presence of penicillin.J. Gen. Microbiol.4, 257–269 (1950).

    Article CAS PubMed  Google Scholar 

  14. Goodman, L. S. et al. Landmark article Sept. 21, 1946: Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders.JAMA251, 2255–2261 (1984).

    Article CAS PubMed  Google Scholar 

  15. Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides.Science103, 409–436 (1946).

    Article CAS PubMed  Google Scholar 

  16. Karnofsky, D. A. Nitrogen mustards in the treatment of neoplastic disease.Adv. Intern. Med.4, 1–75 (1950).

    CAS PubMed  Google Scholar 

  17. Gilman, A. The initial clinical trial of nitrogen mustard.Am. J. Surg.105, 574–578 (1963).

    Article CAS PubMed  Google Scholar 

  18. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.Nature171, 737–738 (1953).

    Article CAS PubMed  Google Scholar 

  19. Heidelberger, C. et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds.Nature179, 663–666 (1957).

    Article CAS PubMed  Google Scholar 

  20. Kohn, K. W., Spears, C. L. & Doty, P. Inter-strand crosslinking of DNA by nitrogen mustard.J. Mol. Biol.19, 266–288 (1966).

    Article CAS PubMed  Google Scholar 

  21. Whittington, R. M. & Close, H. P. Clinical experience with mitomycin C (NSC-26980).Cancer Chemother. Rep.54, 195–198 (1970).

    CAS PubMed  Google Scholar 

  22. Crooke, S. T. & Bradner, W. T. Bleomycin, a review.J. Med.7, 333–428 (1976).

    CAS PubMed  Google Scholar 

  23. Rosenberg, B., Vancamp, L. & Krigas, T. Inhibition of cell division inEscherichia coli by electrolysis products from a platinum electrode.Nature205, 698–699 (1965).

    Article CAS PubMed  Google Scholar 

  24. Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F. & Wolff, J. R. Temporary remissions in acute leukemia in children produced by folic antagonist, 4-aminopteroylglutamic acid (aminopterin).N. Engl. J. Med.238, 787–793 (1948).

    Article CAS PubMed  Google Scholar 

  25. Hitchings, G. H. & Elion, G. B. The chemistry and biochemistry of purine analogs.Ann. NY Acad. Sci.60, 195–199 (1954).

    Article CAS PubMed  Google Scholar 

  26. Ehrlich, P. Chemotherapeutic studies on trypanosomes.J. Roy. Inst. Pub. Health15, 449–456 (1907).

    Google Scholar 

  27. Frei, E. III et al. A comparative study of two regimens of combination chemotherapy in acute leukemia.Blood13, 1126–1148 (1958).

    PubMed  Google Scholar 

  28. Frei, E. III. A commentary. Selected considerations regarding chemotherapy as adjuvant in cancer treatment.Cancer Chemother. Rep.50, 1–8 (1966).

    PubMed  Google Scholar 

  29. Frei, E. III, DeVita, V. T., Moxley, J. H. III & Carbone, P. P. Approaches to improving the chemotherapy of Hodgkin's disease.Cancer Res.26, 1284–1289 (1966).

    PubMed  Google Scholar 

  30. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control.Nature Med.10, 789–799 (2004).

    Article CAS PubMed  Google Scholar 

  31. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer.Cell100, 57–70 (2000).

    Article CAS PubMed  Google Scholar 

  32. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells.Nature Med.2, 561–566 (1996).

    Article CAS PubMed  Google Scholar 

  33. Bartram, C. R. et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia.Nature306, 277–280 (1983).

    Article CAS PubMed  Google Scholar 

  34. Felsher, D. W. Cancer revoked: oncogenes as therapeutic targets.Nature Rev. Cancer3, 375–380 (2003).

    Article CAS  Google Scholar 

  35. de Carcer, G., de Castro, I. P. & Malumbres, M. Targeting cell cycle kinases for cancer therapy.Curr. Med. Chem.14, 969–985 (2007).

    Article CAS PubMed  Google Scholar 

  36. Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle.Nature448, 811–815 (2007).

    Article CAS PubMed  Google Scholar 

  37. Holtrich, U. et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors.Proc. Natl Acad. Sci. USA91, 1736–1740 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy.Nature Rev. Cancer6, 321–330 (2006).

    Article CAS  Google Scholar 

  39. Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M. & Strebhardt, K. Effect of RNA silencing of polo-like kinase 1 (PLK1) on apoptosis and spindle formation in human cancer cells.J. Natl Cancer Inst.94, 1863–1877 (2002).

    Article CAS PubMed  Google Scholar 

  40. Kappel, S., Matthess, Y., Zimmer, B., Kaufmann, M. & Strebhardt, K. Tumor inhibition by genomically integrated inducible RNAi-cassettes.Nucleic Acids Res.34, 4527–4536 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Blum, G., Gazit, A. & Levitzki, A. Substrate competitive inhibitors of IGF-1 receptor kinase.Biochemistry39, 15705–15712 (2000).

    Article CAS PubMed  Google Scholar 

  42. Vassilev, L. T. et al.In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.Science303, 844–848 (2004).

    Article CAS PubMed  Google Scholar 

  43. Reindl, W., Yuan, J., Kramer, A., Strebhardt, K. & Berg, T. Inhibition of Polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions.Chem. Biol. (in the press).

  44. Fong, T. A. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types.Cancer Res.59, 99–106 (1999).

    CAS PubMed  Google Scholar 

  45. Jubb, A. M., Oates, A. J., Holden, S. & Koeppen, H. Predicting benefit from anti-angiogenic agents in malignancy.Nature Rev. Cancer6, 626–635 (2006).

    Article CAS  Google Scholar 

  46. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis.Cell72, 835–846 (1993).

    Article CAS PubMed  Google Scholar 

  47. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibitedin vivo by a dominant-negative Flk-1 mutant.Nature367, 576–579 (1994).

    Article CAS PubMed  Google Scholar 

  48. Faivre, S., Demetri, G., Sargent, W. & Raymond, E. Molecular basis for sunitinib efficacy and future clinical development.Nature Rev. Drug Discov.6, 734–745 (2007).

    Article CAS  Google Scholar 

  49. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors.Nature Rev. Drug Discov.5, 769–784 (2006).

    Article CAS  Google Scholar 

  50. Atmaca, A. et al. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial.Br. J. Cancer97, 177–182 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Gojo, I. et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias.Blood109, 2781–2790 (2007).

    CAS PubMed PubMed Central  Google Scholar 

  52. Karagiannis, T. C. & El Osta, A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds?Leukemia21, 61–65 (2007).

    Article CAS PubMed  Google Scholar 

  53. Jameel, A. et al. Clinical and biological significance of HSP89 α in human breast cancer.Int. J. Cancer50, 409–415 (1992).

    Article CAS PubMed  Google Scholar 

  54. Yano, M., Naito, Z., Tanaka, S. & Asano, G. Expression and roles of heat shock proteins in human breast cancer.Jpn. J. Cancer Res.87, 908–915 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer.Nature Rev. Cancer5, 761–772 (2005).

    Article CAS  Google Scholar 

  56. Ramanathan, R. K. et al. Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers.Clin. Cancer Res.13, 1769–1774 (2007).

    Article CAS PubMed  Google Scholar 

  57. Solit, D. B. et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer.Clin. Cancer Res.13, 1775–1782 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Bagatell, R. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study.Clin. Cancer Res.13, 1783–1788 (2007).

    Article CAS PubMed  Google Scholar 

  59. Ehrlich, P. Über den jetzigen Stand der Karzinomforschung.Beiträge zur experimentellen Pathologie und Chemotherapie 117–164 (1909) (in German).

    Google Scholar 

  60. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity.Nature256, 495–497 (1975).

    Article CAS PubMed  Google Scholar 

  61. Carter, P. Improving the efficacy of antibody-based cancer therapies.Nature Rev. Cancer1, 118–129 (2001).

    Article CAS  Google Scholar 

  62. Schrama, D., Reisfeld, R. A. & Becker, J. C. Antibody targeted drugs as cancer therapeutics.Nature Rev. Drug Discov.5, 147–159 (2006).

    Article CAS  Google Scholar 

  63. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.Science235, 177–182 (1987).

    Article CAS PubMed  Google Scholar 

  64. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.Science244, 707–712 (1989).

    Article CAS PubMed  Google Scholar 

  65. Maloney, D. G. et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma.Blood90, 2188–2195 (1997).

    CAS PubMed  Google Scholar 

  66. McLaughlin, P. et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program.J. Clin. Oncol.16, 2825–2833 (1998).

    Article CAS PubMed  Google Scholar 

  67. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene.Blood99, 754–758 (2002).

    Article CAS PubMed  Google Scholar 

  68. Di Gaetano, N. et al. Complement activation determines the therapeutic activity of rituximabin vivo.J. Immunol.171, 1581–1587 (2003).

    Article CAS PubMed  Google Scholar 

  69. van Mierlo, G. J. et al. CD40 stimulation leads to effective therapy of CD40 tumors through induction of strong systemic cytotoxic T lymphocyte immunity.Proc. Natl Acad. Sci. USA99, 5561–5566 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Czuczman, M. S. et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma.J. Clin. Oncol.23, 4390–4398 (2005).

    Article CAS PubMed  Google Scholar 

  71. Galizia, G. et al. Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer.Oncogene26, 3654–3660 (2007).

    Article CAS PubMed  Google Scholar 

  72. Jonker, D. J. et al. Cetuximab for the treatment of colorectal cancer.N. Engl. J. Med.357, 2040–2048 (2007).

    Article CAS PubMed  Google Scholar 

  73. Herbst, R. S., Fukuoka, M. & Baselga, J. Gefitinib — novel targeted approach to treating cancer.Nature Rev. Cancer4, 956–965 (2004).

    Article CAS  Google Scholar 

  74. Chaudry, M. A., Sales, K., Ruf, P., Lindhofer, H. & Winslet, M. C. EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges.Br. J. Cancer96, 1013–1019 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Chatal, J. F. et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group.J. Clin. Oncol.24, 1705–1711 (2006).

    Article CAS PubMed  Google Scholar 

  76. Tolcher, A. W. et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1.J. Clin. Oncol.25, 1390–1395 (2007).

    Article CAS PubMed  Google Scholar 

  77. Hudziak, R. M. et al. p185HER2 monoclonal antibody has antiproliferative effectsin vitro and sensitizes human breast tumor cells to tumor necrosis factor.Mol. Cell Biol.9, 1165–1172 (1989).

    Article CAS PubMed PubMed Central  Google Scholar 

  78. Crowe, J. S., Hall, V. S., Smith, M. A., Cooper, H. J. & Tite, J. P. Humanized monoclonal antibody CAMPATH-1H: myeloma cell expression of genomic constructs, nucleotide sequence of cDNA constructs and comparison of effector mechanisms of myeloma and Chinese hamster ovary cell-derived material.Clin. Exp. Immunol.87, 105–110 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Prewett, M. et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma.J. Immunother. Emphasis Tumor Immunol.19, 419–427 (1996).

    Article CAS PubMed  Google Scholar 

  80. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.N. Engl. J. Med.350, 2335–2342 (2004).

    Article CAS PubMed  Google Scholar 

  81. Pastan, I., Hassan, R., FitzGerald, D. J. & Kreitman, R. J. Immunotoxin therapy of cancer.Nature Rev. Cancer6, 559–565 (2006).

    Article CAS  Google Scholar 

  82. Pennell, C. A. & Erickson, H. A. Designing immunotoxins for cancer therapy.Immunol. Res.25, 177–191 (2002).

    Article CAS PubMed  Google Scholar 

  83. Khawli, L. A., Hu, P. & Epstein, A. L. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors.Handb. Exp. Pharmacol.181, 291–328 (2008).

    Article CAS  Google Scholar 

  84. Goldenberg, D. M. & Sharkey, R. M. Novel radiolabeled antibody conjugates.Oncogene26, 3734–3744 (2007).

    Article CAS PubMed  Google Scholar 

  85. von Mehren, M., Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy for cancer.Annu. Rev. Med.54, 343–369 (2003).

    Article CAS PubMed  Google Scholar 

  86. Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia.Clin. Cancer Res.7, 1490–1496 (2001).

    CAS PubMed  Google Scholar 

  87. Sievers, E. L. & Linenberger, M. Mylotarg: antibody-targeted chemotherapy comes of age.Curr. Opin. Oncol.13, 522–527 (2001).

    Article CAS PubMed  Google Scholar 

  88. Arons, E. et al. Characterization of T-cell repertoire in hairy cell leukemia patients before and after recombinant immunotoxin BL22 therapy.Cancer Immunol. Immunother.55, 1100–1110 (2006).

    Article CAS PubMed  Google Scholar 

  89. Mandler, R., Kobayashi, H., Hinson, E. R., Brechbiel, M. W. & Waldmann, T. A. Herceptin–geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity.Cancer Res.64, 1460–1467 (2004).

    Article CAS PubMed  Google Scholar 

  90. Seidman, A. et al. Cardiac dysfunction in the trastuzumab clinical trials experience.J. Clin. Oncol.20, 1215–1221 (2002).

    Article CAS PubMed  Google Scholar 

  91. Byrd, J. C. et al. Rituximab therapy in hematologic malignancy patients with circulating blood tumor cells: association with increased infusion-related side effects and rapid blood tumor clearance.J. Clin. Oncol.17, 791–795 (1999).

    Article CAS PubMed  Google Scholar 

  92. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer.N. Engl. J. Med.353, 1659–1672 (2005).

    Article CAS PubMed  Google Scholar 

  93. Zee-Cheng, R. K. & Cheng, C. C. Screening and evaluation of anticancer agents.Methods Find. Exp. Clin. Pharmacol.10, 67–101 (1988).

    CAS PubMed  Google Scholar 

  94. Issell, B. F. & Crooke, S. T. Maytansine.Cancer Treat. Rev.5, 199–207 (1978).

    Article CAS PubMed  Google Scholar 

  95. Zhou, X. J. & Rahmani, R. Preclinical and clinical pharmacology of vinca alkaloids.Drugs44 (Suppl 4), 1–16 (1992).

    Article CAS PubMed  Google Scholar 

  96. Cores, E. P., Holland, J. F., Wang, J. J. & Sinks, L. F. Doxorubicin in disseminated osteosarcoma.JAMA221, 1132–1138 (1972).

    Article CAS PubMed  Google Scholar 

  97. Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. Jr. The vinca alkaloids: a new class of oncolytic agents.Cancer Res.23, 1390–1427 (1963).

    CAS PubMed  Google Scholar 

  98. Rowinsky, E. K. & Donehower, R. C. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics.Pharmacol. Ther.52, 35–84 (1991).

    Article CAS PubMed  Google Scholar 

  99. Uppuluri, S., Knipling, L., Sackett, D. L. & Wolff, J. Localization of the colchicine-binding site of tubulin.Proc. Natl Acad. Sci. USA90, 11598–11602 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Damayanthi, Y. & Lown, J. W. Podophyllotoxins: current status and recent developments.Curr. Med. Chem.5, 205–252 (1998).

    CAS PubMed  Google Scholar 

  101. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent fromTaxus brevifolia.J. Am. Chem. Soc.93, 2325–2327 (1971).

    Article CAS PubMed  Google Scholar 

  102. Fuchs, D. A. & Johnson, R. K. Cytologic evidence that taxol, an antineoplastic agent fromTaxus brevifolia, acts as a mitotic spindle poison.Cancer Treat. Rep.62, 1219–1222 (1978).

    CAS PubMed  Google Scholar 

  103. Giannakakou, P. et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells.Proc. Natl Acad. Sci. USA97, 2904–2909 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  104. Ehrlich, P. Über den jetzigen Stand der Chemotherapie.Berichte der Deutschen Chemischen Gesellschaft42, 17–47 (1909) (in German).

    Google Scholar 

  105. Panthananickal, A., Hansch, C. & Leo, A. Structure–activity relationship of aniline mustards acting against B-16 melanoma in mice.J. Med. Chem.22, 1267–1269 (1979).

    Article CAS PubMed  Google Scholar 

  106. Hansch, C., Hoekman, D. & Gao, H. Comparative QSAR: toward a deeper understanding of chemicobiological interactions.Chem. Rev.96, 1045–1076 (1996).

    Article CAS PubMed  Google Scholar 

  107. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 1999.J. Comb. Chem.2, 383–433 (2000).

    Article CAS PubMed  Google Scholar 

  108. Thomas, R. K. et al. High-throughput oncogene mutation profiling in human cancer.Nature Genet.39, 347–351 (2007).

    Article CAS PubMed  Google Scholar 

  109. Thomas, R. K. et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing.Nature Med.12, 852–855 (2006).

    Article CAS PubMed  Google Scholar 

  110. Weir, B. A. et al. Characterizing the cancer genome in lung adenocarcinoma.Nature450, 893–898 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  111. Haney, S. A. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets.Expert Opin. Ther. Targets.11, 1429–1441 (2007).

    Article CAS PubMed  Google Scholar 

  112. Konig, R. et al. A probability-based approach for the analysis of large-scale RNAi screens.Nature Meth.4, 847–849 (2007).

    Article CAS  Google Scholar 

  113. Delucas, L. J. et al. Protein crystallization: virtual screening and optimization.Prog. Biophys. Mol. Biol.88, 285–309 (2005).

    Article CAS PubMed  Google Scholar 

  114. Sarver, R. W. et al. Binding thermodynamics of substituted diaminopyrimidine renin inhibitors.Anal. Biochem.360, 30–40 (2007).

    Article CAS PubMed  Google Scholar 

  115. Sharp, S. Y. et al. Inhibition of the heat shock protein 90 molecular chaperonein vitro andin vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues.Mol. Cancer Ther.6, 1198–1211 (2007).

    Article CAS PubMed  Google Scholar 

  116. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature435, 677–681 (2005).

    Article CAS PubMed  Google Scholar 

  117. Wang, J. & Ramnarayan, K. Toward designing drug-like libraries: a novel computational approach for prediction of drug feasibility of compounds.J. Comb. Chem.1, 524–533 (1999).

    Article CAS PubMed  Google Scholar 

  118. Schneider, G. & Fechner, U. Computer-basedde novo design of drug-like molecules.Nature Rev. Drug Discov.4, 649–663 (2005).

    Article CAS  Google Scholar 

  119. Yang, J., Shamji, A., Matchacheep, S. & Schreiber, S. L. Identification of a small-molecule inhibitor of class Ia PI3Ks with cell-based screening.Chem. Biol.14, 371–377 (2007).

    Article CAS PubMed  Google Scholar 

  120. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia.N. Engl. J. Med.355, 2408–2417 (2006).

    Article CAS PubMed  Google Scholar 

  121. Motzer, R. J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma.N. Engl. J. Med.356, 115–124 (2007).

    Article CAS PubMed  Google Scholar 

  122. Smith, I. E. Trastuzumab for early breast cancer.Lancet367, 107 (2006).

    Article PubMed  Google Scholar 

  123. Barnett, D., Stevens, A. & Longson, C. Appraisal of bevacizumab and cetuximab for treatment of metastatic colorectal cancer in the UK.Lancet Oncol.7, 807–808 (2006).

    Article PubMed  Google Scholar 

  124. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma.N. Engl. J. Med.356, 125–134 (2007).

    Article CAS PubMed  Google Scholar 

  125. Mayer, E. L., Lin, N. U. & Burstein, H. J. Novel approaches to advanced breast cancer: bevacizumab and lapatinib.J. Natl Compr. Cancer Netw.5, 314–323 (2007).

    Article CAS  Google Scholar 

  126. Richon, V. M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases.Proc. Natl Acad. Sci. USA95, 3003–3007 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  127. Stebbins, C. E. et al. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent.Cell89, 239–250 (1997).

    Article CAS PubMed  Google Scholar 

  128. Hodgson, J. ADMET--turning chemicals into drugs.Nature Biotechnol.19, 722–726 (2001).

    Article CAS  Google Scholar 

  129. Finnin, M. S. et al. StructuRes. of a histone deacetylase homologue bound to the TSA and SAHA inhibitors.Nature401, 188–193 (1999).

    Article CAS PubMed  Google Scholar 

  130. Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate.Nature Med.12, 908–916 (2006).

    Article PubMed CAS  Google Scholar 

  131. Strebhardt, K. & Ullrich, A. Another look at imatinib mesylate.N. Engl. J. Med.355, 2481–2482 (2006).

    Article CAS PubMed  Google Scholar 

  132. Chu, T. F. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib.Lancet370, 2011–2019 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  133. Daub, H., Specht, K. & Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors.Nature Rev. Drug Discov.3, 1001–1010 (2004).

    Article CAS  Google Scholar 

  134. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification.Science293, 876–880 (2001).

    Article CAS PubMed  Google Scholar 

  135. Shah, N. P. et al. Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia.Cancer Cell2, 117–125 (2002).

    Article CAS PubMed  Google Scholar 

  136. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL.Cell112, 831–843 (2003).

    Article CAS PubMed  Google Scholar 

  137. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase.Science289, 1938–1942 (2000).

    Article CAS PubMed  Google Scholar 

  138. Liu, Y. & Gray, N. S. Rational design of inhibitors that bind to inactive kinase conformations.Nature Chem. Biol.2, 358–364 (2006).

    Article CAS  Google Scholar 

  139. Levinson, N. M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain.PLoS Biol.4, e144 (2006).

    Article PubMed PubMed Central CAS  Google Scholar 

  140. Guilhot, F. et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase.Blood109, 4143–4150 (2007).

    Article CAS PubMed  Google Scholar 

  141. Lombardo, L. J. et al. Discovery ofN-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays.J. Med. Chem.47, 6658–6661 (2004).

    Article CAS PubMed  Google Scholar 

  142. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr–Abl.Cancer Cell7, 129–141 (2005).

    Article CAS PubMed  Google Scholar 

  143. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.350, 2129–2139 (2004).

    Article CAS PubMed  Google Scholar 

  144. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates?Nature Rev. Drug Discov.3, 711–715 (2004).

    Article CAS  Google Scholar 

  145. Becher, O. J. & Holland, E. C. Genetically engineered models have advantages over xenografts for preclinical studies.Cancer Res.66, 3355–3358, discussion 3358–3359 (2006).

    Article CAS PubMed  Google Scholar 

  146. Sharpless, N. E. & DePinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development.Nature Rev. Drug Discov.5, 741–754 (2006).

    Article CAS  Google Scholar 

  147. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models.Nature Rev. Cancer7, 645–658 (2007).

    Article CAS  Google Scholar 

  148. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection.Nature Rev. Cancer5, 845–856 (2005).

    Article CAS  Google Scholar 

  149. Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma.Nature367, 375–376 (1994).

    Article CAS PubMed  Google Scholar 

  150. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma.Science263, 1281–1284 (1994).

    Article CAS PubMed  Google Scholar 

  151. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF–MEK–ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.Cancer Res.64, 7099–7109 (2004).

    Article CAS PubMed  Google Scholar 

  152. Carlomagno, F. et al. BAY 43–9006 inhibition of oncogenic RET mutants.J. Natl Cancer Inst.98, 326–334 (2006).

    Article CAS PubMed  Google Scholar 

  153. Godl, K. et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors.Proc. Natl Acad. Sci. USA100, 15434–15439 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  154. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network.Nature437, 1173–1178 (2005).

    Article CAS PubMed  Google Scholar 

  155. Espina, V., Wulfkuhle, J. D., Calvert, V. S., Petricoin, E. F. III & Liotta, L. A. Reverse phase protein microarrays for monitoring biological responses.Methods Mol. Biol.383, 321–336 (2007).

    CAS PubMed  Google Scholar 

  156. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention.Science319, 916–919 (2008).

    Article CAS PubMed  Google Scholar 

  157. Buchdunger, E. et al. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class.Proc. Natl Acad. Sci. USA92, 2558–2562 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  158. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinasein vitro andin vivo by a 2-phenylaminopyrimidine derivative.Cancer Res.56, 100–104 (1996).

    CAS PubMed  Google Scholar 

  159. Zimmermann, J. et al. Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC).Arch. Pharm. (Weinheim)329, 371–376 (1996).

    Article CAS  Google Scholar 

  160. Coussens, L. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene.Science230, 1132–1139 (1985).

    Article CAS PubMed  Google Scholar 

  161. Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells.Nature309, 418–425 (1984).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kappel for establishing the list of references. This work was supported by grants from the Deutsche Krebshilfe, Messer Stiftung, Sander Stiftung, Schleussner Stiftung, Else Kröner-Fresenius/Carls-Stiftung and the Dresdner Bank.

Author information

Authors and Affiliations

  1. Klaus Strebhardt is at the Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodour-Stern-Kai 7, 60590 Frankfurt, Germany.,

    Klaus Strebhardt

  2. Axel Ullrich is at the Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18A, 82152 Martinsried, Germany.,

    Axel Ullrich

Authors
  1. Klaus Strebhardt

    You can also search for this author inPubMed Google Scholar

  2. Axel Ullrich

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKlaus Strebhardt.

Rights and permissions

About this article

Cite this article

Strebhardt, K., Ullrich, A. Paul Ehrlich's magic bullet concept: 100 years of progress.Nat Rev Cancer8, 473–480 (2008). https://doi.org/10.1038/nrc2394

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp