- Article
- Published:
From quantum multiplexing to high-performance quantum networking
Nature Photonicsvolume 4, pages792–796 (2010)Cite this article
2719Accesses
147Citations
3Altmetric
Abstract
Quantum repeaters will be critical to quantum communication and quantum computation. Here, we describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. We show how this mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how it may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The communication rate is shown to be a function of the maximum distance between any two adjacent quantum repeaters rather than of the entire length of the network.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Nielsen, M. A. & Chuang, I. L.Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Spiller, T. P., Munro, W. J., Barrett, S. D. & Kok, P. An introduction to quantum information processing: applications and realizations.Contemp. Phys.46, 407–436 (2005).
Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Preprint athttp://arxiv.org/abs/quant-ph/0206091 (2002).
Spiller, T. P. & Munro, W. J. Towards a quantum information technology industry.J. Phys.: Condens. Matter18, 1–10 (2006).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography.Rev. Mod. Phys.74, 145–195 (2002).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication.Phys. Rev. Lett.81, 5932–5935 (1998).
Dür, W., Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification.Phys. Rev. A59, 169–181 (1999).
Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Preprint athttp://arxiv.org/abs/0906.2699 (2009) and references within.
Van Loock, P. et al. Hybrid quantum repeater using bright coherent light.Phys. Rev. Lett.96, 240501 (2006).
Ladd, T. D., van Loock P., Nemoto K., Munro W. J. & Yamamoto Y. Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,New J. Phys.8, 184 (2006).
Munro, W. J., Van Meter, R., Louis, S. G. R. & Nemoto, K. High-bandwidth hybrid quantum repeater.Phys. Rev. Lett.101, 040502 (2008).
Van Meter R., Ladd T. D., Munro W. J. & Nemoto K., System design for a long-line quantum Repeater.IEEE/ACM Transactions on Networking17, 1002–1013 (2009).
Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters.Phys. Rev. Lett.96, 070504 (2006).
Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication.Science279, 205–208 (1998).
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics.Nature414, 413–418 (2001).
Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits.Phys. Rev. Lett.98, 240502 (2007).
Yuan, Z. et al. Experimental demonstration of a BDCZ quantum repeater node.Nature454, 1098–1101 (2008).
Goebel, A. M. et al. Multistage entanglement swapping.Phys. Rev. Lett.101, 080403 (2008).
Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories.Phys. Rev. Lett98, 190503 (2007).
Tittel, W. et al. Photon-echo quantum memory in solid state systems.Laser Photon. Rev.4, 244–267 (2009).
Sangouard, N., Dubessy, R. & Simon, C. Quantum repeaters based on single trapped ions.Phys. Rev. A79, 042340 (2009).
Dür, W. & Briegel, H. J. Entanglement purification and quantum error correction.Rep. Prog. Phys.70, 1381–1424 (2007).
Pan, J.-W., Simon, S., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication.Nature410, 1067–1070 (2001).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels.Phys. Rev. Lett.70, 1895–1899 (1993).
Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. Multiplexed memory-insensitive quantum repeaters.Phys. Rev. Lett.98, 060502 (2007).
Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint athttp://arxiv.org/abs/0904.2557 (2009).
Devitt, S. J., Nemoto, K. & Munro, W. J. The idiots guide to quantum error correction. Preprint athttp://arxiv.org/abs/0905.2794 (2009).
Jiang, L. et al. Quantum repeater with encoding.Phys. Rev A79, 032325 (2009).
Steane, A. M. Error correcting codes in quantum theory.Phys. Rev. Lett.77, 793–797 (1996).
Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist.Phys. Rev. A54, 1098–1105 (1996).
Steane, A. M. Multiple particle interference and quantum error correction.Proc. R. Soc. Lond. A452, 2551–2577 (1996).
Knill, E. Quantum computing with realistically noisy devices.Nature434, 39–44 (2005).
Fowler, A. G. et al. Surface code quantum communication.Phys. Rev. Lett.104, 180503 (2010).
Perseguers, S. et al. One-shot entanglement generation over long distances in noisy quantum networks.Phys. Rev. A78, 062324 (2008).
Perseguers, S. Fidelity threshold for long-range entanglement in quantum networks.Phys. Rev. A81, 012310 (2010).
Bacon, D. Operator quantum error-correcting subsystems for self-correcting quantum memories.Phys. Rev. A73, 012340 (2006).
Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles.Phys. Rev. A76, 012301 (2007).
Aliferis, P. & Cross, A. W. Subsystem fault tolerance with the Bacon-Shor code.Phys. Rev. Lett.98, 220502 (2007).
Acknowledgements
This work was supported in part by European Union seventh framework projects Hybrid Information Processing (HIP), Quantum Interfaces, Sensors, and Communication based on Entanglement (Q-ESSENCE), a Hewlett Packard Laboratories Innovation Research Grant and Japanese grants from the Specially Promoted Research in Grants-in-Aid for Scientific Research funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the National Institute of Information and Communications Technology (NICT) and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST).
Author information
Authors and Affiliations
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
W. J. Munro, A. M. Stephens, S. J. Devitt & Kae Nemoto
Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS34 8QZ, UK
W. J. Munro & K. A. Harrison
- W. J. Munro
You can also search for this author inPubMed Google Scholar
- K. A. Harrison
You can also search for this author inPubMed Google Scholar
- A. M. Stephens
You can also search for this author inPubMed Google Scholar
- S. J. Devitt
You can also search for this author inPubMed Google Scholar
- Kae Nemoto
You can also search for this author inPubMed Google Scholar
Contributions
W.J.M., K.A.H. and K.N. conceived the original entanglement-distribution concept. All authors contributed to the final design of the network. W.J.M. and A.M.S. prepared the manuscript with input from S.J.D., K.A.H. and K.N.
Corresponding author
Correspondence toW. J. Munro.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 212 kb)
Rights and permissions
About this article
Cite this article
Munro, W., Harrison, K., Stephens, A.et al. From quantum multiplexing to high-performance quantum networking.Nature Photon4, 792–796 (2010). https://doi.org/10.1038/nphoton.2010.213
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Forty thousand kilometers under quantum protection
- N. S. Kirsanov
- V. A. Pastushenko
- V. M. Vinokur
Scientific Reports (2023)
A quantum router architecture for high-fidelity entanglement flows in quantum networks
- Yuan Lee
- Eric Bersin
- Dirk Englund
npj Quantum Information (2022)
Massively-multiplexed generation of Bell-type entanglement using a quantum memory
- Michał Lipka
- Mateusz Mazelanik
- Michał Parniak
Communications Physics (2021)
Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer
- Bikash K. Behera
- Swarnadeep Seth
- Prasanta K. Panigrahi
Quantum Information Processing (2019)
Perfect quantum multiple-unicast network coding protocol
- Dan-Dan Li
- Fei Gao
- Qiao-Yan Wen
Quantum Information Processing (2018)