Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

The capsaicin receptor: a heat-activated ion channel in the pain pathway

Naturevolume 389pages816–824 (1997)Cite this article

Abstract

Capsaicin, the main pungent ingredient in ‘hot’ chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuliin vivo.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression cloning of a capsaicin receptor using calcium imaging.
Figure 2: VR1 responds to purified vanilloids and pepper extracts.
Figure 3: VR1 responds to purified vanilloids and pepper extracts.
Figure 4: VR1 is a calcium-permeable, non-selective cation channel.
Figure 5: Capsaicin induces death of cells expressing the vanilloid receptor.
Figure 6: VR1 resembles store-operated channels.
Figure 7: VR1 resembles store-operated channels.
Figure 8: VR1 resembles store-operated channels.
Figure 9: Vanilloid receptor expression is restricted to sensory neurons.
Figure 10: Vanilloid receptor expression is restricted to sensory neurons.
Figure 11: VR1 is activated by noxious thermal stimuli.
Figure 12: VR1 is activated by noxious thermal stimuli.
Figure 13: Hydrogen ions potentiate the effect of capsaicin on VR1.

Similar content being viewed by others

References

  1. Fields, H. L.Pain(McGraw-Hill, New York, (1987)).

    Google Scholar 

  2. Szolcsanyi, J. inCapsaicin in the Study of Pain(ed. Wood, J.) 1–26 (Academic, London, (1993)).

    Google Scholar 

  3. Campbell, E. inCapsaicin and the Study of Pain(ed. Wood, J.) 255–272 (Academic, London, (1993)).

    Google Scholar 

  4. Szallasi, A. & Blumberg, P. M. Vanilloid receptors: new insights enhance potential as a therapeutic target.Pain68, 195–208 (1996).

    Article CAS  Google Scholar 

  5. Jancso, G., Kiraly, E. & Jancso-Gaborr, A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons.Nature270, 741–743 (1977).

    Article ADS CAS  Google Scholar 

  6. James, I. F., Ninkina, N. N. & Wood, J. N. inCapsaicin in the Study of Pain(ed. Wood, J. N.) 83–104 (Academic, London, (1993)).

    Google Scholar 

  7. Bevan, S. & Szolcsanyi, J. Sensory neuron-specific actions of capsaicin: mechanisms and applications.Trends Pharmacol. Sci.11, 330–333 (1990).

    Article CAS  Google Scholar 

  8. Oh, U., Hwang, S. W. & Kim, D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons.J. Neurosci.16, 1659–1667 (1996).

    Article CAS  Google Scholar 

  9. Wood, J. N. et al. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture.J. Neurosci.8, 3208–3220 (1988).

    Article CAS  Google Scholar 

  10. Feigin, A. M., Aaronov, E. V., Bryant, B. P., Teeter, J. H. & Brand, J. G. Capsaicin and its analogs induce ion channels in planar lipid bilayers.Neuroreport6, 2134–2136 (1995).

    Article CAS  Google Scholar 

  11. Szolcsanyi, J. & Jancso-Gaborr, A. Sensor effects of capsaicin congeners I. Relationship between chemical structure and pain-producing potency of pungent agents.Drug Res.25, 1877–1881 (1975).

    CAS  Google Scholar 

  12. Szolcsanyi, J. & Jancso-Gaborr, A. Sensory effects of capsaicin congeners II. Importance of chemical structure and pungency in desensitizing activity of capsaicin-like compounds.Drug Res.26, 33–37 (1976).

    CAS  Google Scholar 

  13. Bevan, S. et al. Capsazepine: a competitive antagonist of the sensory neuron excitant capsaicin.Br. J. Pharmacol.107, 544–552 (1992).

    Article CAS  Google Scholar 

  14. deVries, D. J. & Blumberg, P. M. Thermoregulatory effects of resiniferatoxin in the mouse: comparison with capsaicin.Life Sci.44, 711–715 (1989).

    Article CAS  Google Scholar 

  15. Szallasi, A. & Blumberg, P. M. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper.Neuroscience30, 515–520 (1989).

    Article CAS  Google Scholar 

  16. Szallasi, A. The vanilloid (capsaicin) receptor: Receptor types and species specificity.Gen. Pharmacol.25, 223–243 (1994).

    Article CAS  Google Scholar 

  17. Dray, A., Forbes, C. A. & Burgess, G. M. Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro.Neurosci. Lett.110, 52–59 (1990).

    Article CAS  Google Scholar 

  18. Tsien, R. Y. Fluorescent probes of cell signaling.Annu. Rev. Neurosci.12, 227–253 (1989).

    Article CAS  Google Scholar 

  19. Winter, J., Dray, A., Wood, J. N., Yeats, J. C. & Bevan, S. Cellular mechanism of action of resiniferatoxin: a potent sensory neuron excitotoxin.Brain Res.520, 131–140 (1990).

    Article CAS  Google Scholar 

  20. Liu, L. & Simon, S. A. Arapid capsaicin-activated current in rat trigeminal ganglion neurons.Proc. Natl Acad. Sci. USA91, 738–741 (1994).

    Article ADS CAS  Google Scholar 

  21. Scoville, W. Note on capsicums.J. Am. Pharm. Assoc.1, 453–454 (1912).

    CAS  Google Scholar 

  22. Woodbury, J. E. Determination of capsicum pungency by high pressure liquid chromatography and spectrofluorometric determination.J. Assoc. Official Anal. Chem.63, 556–558 (1980).

    CAS  Google Scholar 

  23. Berkley, R. & Jacobson, E.Peppers: A Cookbook(Simon and Schuster, New York, (1992)).

    Google Scholar 

  24. Mayer, M. L. & Westbrook, G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons.J. Physiol. (Lond.)394, 501–527 (1987).

    Article CAS  Google Scholar 

  25. Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. & Patrick J. W. Molecular cloning functionalpropertie and distribution of rat brain a7: a nicotinic cation channel highly permeable to calcium.J. Neurosci. 13 functionalpropertie 596–604 (1993).

  26. Yeats, J. C., Docherty, R. J. & Bevan, S. Calcium-dependent and -independent desensitization of capsaicin-evoked responses in voltage-clamped adult rat dorsal root ganglion (DRG) neurones in culture.J. Physiol. (Lond.)446, 390 (1992).

    Article  Google Scholar 

  27. Holzer, P. Capsaicin: Cellular targets, mechanisms of action, and selectivity for thin sensory neurons.Pharmacol. Rev.43, 143–201 (1991).

    CAS PubMed  Google Scholar 

  28. Forbes, C. A. & Bevan, S. Single channels activated by capsaicin in patches of membrane from adult rat sensory neurones in culture.Neurosci. Lett. (suppl.)32, S3 (1988).

    Google Scholar 

  29. Crem, R. J., Fechheimer, M. & MIller, L. K. Prevention of apoptosis by a Bacculovirus gene during infection of insect cells.Science254, 1388–1390 (1991).

    Article ADS  Google Scholar 

  30. Choi, D. W. Glutamate receptors and the induction of excitotoxic neuronal death.Prog. Brain Res.100, 47–51 (1994).

    Article CAS  Google Scholar 

  31. Hong, K. & Driscoll, M. Atransmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration inC. elegans.Nature367, 470–473 (1994).

    Article ADS CAS  Google Scholar 

  32. Montell, C. & Rubin, G. M. Molecular characterization of theDrosophila trp locus: A putative integral membrane protein required for phototransduction.Neuron2, 1313–1323 (1989).

    Article CAS  Google Scholar 

  33. Hardie, R. C. & Minke, B. Novel Ca2+ channels underlying transduction inDrosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization.Trends Neurosci.16, 371–376 (1993).

    Article CAS  Google Scholar 

  34. Clapham, D. E. TRP is cracked, but is CRAC TRP?Neuron16, 1069–1072 (1996).

    Article CAS  Google Scholar 

  35. Petersen, C. C. H., Berridge, M. J., Borgese, M. F. & Bennett, D. L. Putative capacitative calcium entry channels: expression ofDrosophila trp and evidence for the existence of vertebrate homologs.Biochem. J.311, 41–44 (1995).

    Article CAS  Google Scholar 

  36. Merritt, J. E.et al. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry.Biochem. J.271, 515–522 (1990).

    Article CAS  Google Scholar 

  37. Satinoff, E. Behavioral thermoregulation in response to local cooling of the rat brain.Am. J. Physiol.206, 1389–1394 (1964).

    Article CAS  Google Scholar 

  38. Bevan, S. & Geppetti, P. Protons: small stimulants of capsaicin-sensitive sensory nerves.Trends Neurosci.17, 509–512 (1994).

    Article CAS  Google Scholar 

  39. Petersen, M. & LaMotte, R. H. Effect of protons on the inward current evoked by capsaicin in isolated dorsal root ganglion cells.Pain54, 37–42 (1993).

    Article CAS  Google Scholar 

  40. Kress, M., Fetzer, S., Reeh, P. W. & Vyklicky, L. Low pH facilitates capsaicin responses in isolated sensory neurons of the rat.Neurosci. Lett.211, 5–8 (1996).

    Article CAS  Google Scholar 

  41. Snyder, S. H. Opiate receptors and internal opiates.Sci. Am.236, 44–56 (1977).

    Article CAS  Google Scholar 

  42. Cesare, P. & McNaughton, P. Anovel heat-activated current in nociceptive neurons and its sensitization by bradykinin.Proc. Natl Acad. Sci. USA93, 15435–15439 (1996).

    Article ADS CAS  Google Scholar 

  43. Reichling, D. B. & Levine, J. D. Heat transduction in rat sensory neurons by calcium-dependent activation of a cation channel.Proc. Natl Acad. Sci. USA94, 7006–7011 (1997).

    Article ADS CAS  Google Scholar 

  44. Amann, R., Donnerer, J. & Lembeck, F. Activation of primary afferent neurons by thermal stimulation: influence of Ruthenium Red.Naunyn Schmiedeberg's Arch. Pharmacol.341, 108–113 (1990).

    Article CAS  Google Scholar 

  45. Kirschstein, T., Busselberg, D. & Treede, R. D. Coexpression of heat-evoked and capsaicin-evoked inward currents in acutely dissociated rat dorsal root ganglion neurons.Neurosci. Lett.231, 33–36 (1997).

    Article CAS  Google Scholar 

  46. Brake, A., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.Nature371, 519–523 (1994).

    Article ADS CAS  Google Scholar 

  47. Hopp, T. P. & Woods, K. R. Prediction of protein antigenic determinants from amino acid sequences.Proc. Natl Acad. Sci. USA78, 3824–3828 (1981).

    Article ADS CAS  Google Scholar 

  48. Valera, S. et al. Anew class of ligand-gated ion channel defined by P2X receptor for extracellular ATP.Nature371, 516–519 (1994).

    Article ADS CAS  Google Scholar 

  49. Cathala, G. et al. Laboratory methods: A method for isolation of intact, translationally active ribonucleic acid.DNA2, 329–335 (1983).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Kong, M. Chao and A. Brake for the dorsal root ganglian cDNA and plasmid DNA used in library construction; T. Livelli for HEK293 cells and advice regarding transfection; J.Trafton for guidance with calcium imaging proceudres; N. Guy for tissue sections; J. Poblete for technical assistance; A. Basbaum and M. Dallman for comments on the manuscript; and A. Brake and H.Ingraham for advice and encouragement. M.J.C. is a recipient of an American Cancer Society postdoctoral fellowship and a NARSAD young investigator award. This work was supported by grants from the NIH.

Author information

Author notes
  1. Mark A. Schumacher, Makoto Tominaga and Jon D. Levine: These authors contributed equally to this study.

Authors and Affiliations

  1. Departments of Cellular and Molecular Pharmacology, San Francisco, 94143-0450, California, USA

    Michael J. Caterina, Makoto Tominaga, Tobias A. Rosen & David Julius

  2. Departments of Anesthesia, San Francisco, 94143-0450, California, USA

    Mark A. Schumacher

  3. Departments of Medicine, University of California, San Francisco, 94143-0450, California, USA

    Jon D. Levine

Authors
  1. Michael J. Caterina

    You can also search for this author inPubMed Google Scholar

  2. Mark A. Schumacher

    You can also search for this author inPubMed Google Scholar

  3. Makoto Tominaga

    You can also search for this author inPubMed Google Scholar

  4. Tobias A. Rosen

    You can also search for this author inPubMed Google Scholar

  5. Jon D. Levine

    You can also search for this author inPubMed Google Scholar

  6. David Julius

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDavid Julius.

Rights and permissions

About this article

Cite this article

Caterina, M., Schumacher, M., Tominaga, M.et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature389, 816–824 (1997). https://doi.org/10.1038/39807

Download citation

Access through your institution
Buy or subscribe

Associated content

Collection

Nobel Prize in Physiology or Medicine 2021

Collection

The Kavli Prize 2020

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp