2492Accesses
80Citations
4Altmetric
Abstract
Human skin optical properties were studied in vivo using terahertz (THz) time-domain spectroscopy. For the attenuated total internal reflection (ATR) the silicon Dowe prism was used. The measurements were carried out on six volunteers with normal blood glucose concentration and in good health. A standard oral glucose tolerance test was also performed. The ATR spectra of palm skin were consecutively measured at 0–90 min after glucose intake. The variations of the ATR spectra of human skin were correlated with the changes in blood glucose level. The amplitude of ATR signal of human palm skin increased and the phase decreased when glucose concentrations in blood rose above the normal level. Our results demonstrate the possibility of a non-invasive real-time measurement of blood glucose concentration.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.







Similar content being viewed by others
References
Angeluts, A.A., Balakin, A.V., Evdokimov, M.G., Esaulkov, M.N., Nazarov, M.M., Ozheredov, I.A., Sapozhnikov, D.A., Solyankin, P.M., Cherkasova, O.P., Shkurinov, A.P.: Characteristic responses of biological and nanoscale systems in the terahertz frequency range. Quantum Electron.44(7), 614–632 (2014a)
Angeluts, A.A., Gapeyev, A.B., Esaulkov, M.N., Kosareva, O.G., Matyunin, S.N., Nazarov, M.M., Pashovkin, T.N., Solyankin, P.M., Cherkasova, O.P., Shkurinov, A.P.: Study of Terahertz-Radiation-Induced DNA Damage in Human Blood Leukocytes. Quantum Electron.44(3), 247–251 (2014b)
Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys.38, 2543–2555 (2005)
Bennett, D.B., Li, W., Taylor, Z.D., Grundfest, W.S., Brown, E.R.: Stratified media model for terahertz reflectometry of the skin. IEEE Sens. J.11(5), 1253–1262 (2011). doi:10.1109/JSEN.2010.2088387
Burmeister, J.J., Arnold, M.A., Small, G.W.: Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues. Diabetes Technol. Ther.2(1), 5–16 (2000)
Caduff, A., Talary, M.S., Mueller, M., Dewarrat, F., Klisic, J., Donath, M., Heinemann, L., Stahel, W.A.: Non-invasive glucose monitoring in patients with Type 1 diabetes: a Multisensor system combining sensors for dielectric and optical characterisation of skin. Biosens. Bioelectron.24(9), 2778–2784 (2009). doi:10.1016/j.bios.2009.02.001
Cameron, B.D., Anumula, H.: Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Diabetes Technol. Ther.8(2), 156–164 (2006)
Caspers, P.J., Lucassen, G.W., Puppels, G.J.: Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J.85, 572–580 (2003)
Cherkasova, O.P., Nazarov, M.M., Smirnova, I.N., Angeluts, A.A., Shkurinov, A.P.: Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes. Phys. Wave Phenom.22(3), 185–188 (2014)
Cherkasova, O.P., Nazarov, M.M., Angeluts, A.A., Shkurinov, A.P.: The investigation of blood plasma in the terahertz frequency range. Opt. Spectrosc.120(1), 55–63 (2016)
Cherkasova, O.P., Nazarov, M.M., Shkurinov, A.P., Fedorov, V.I.: Terahertz spectroscopy of biological molecules. Radiophys. Quantum Electron.52(7), 518–523 (2009)
Cherkasova, O.P., Nazarov, M. M., Shkurinov, A.P.: The investigation of blood and skin THz response at high glucose concentration. In: IEEE 40th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz 2015): proceedings, F1E4 (2015)
Clarke, S.F., Foster, J.R.: A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci.69(2), 83–93 (2012)
Echchgadda, I., Grundt, J.A., Tarango, M., Ibey, B.L., Tongue, T., Liang, M., Xin, H., Wilmink, G.J.: Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin. J. Biomed. Opt.18(12), 120503 (2013)
Feldman, Yu., Puzenko, A., Ishai, P.B., Caduff, A., Davidovich, I., Sakran, F., Agranat, A.J.: The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys. Med. Biol.54, 3341–3363 (2009)
Fitzgerald, A.J., Pickwell-MacPherson, E., Wallace, V.P.: Use of finite difference time domain simulations and Debye Theory for modelling the Terahertz reflection response of normal and tumour breast tissue. PLoS One9(7), e99291 (2014). doi:10.1371/journal.pone.0099291
Fowler, M.J.: Microvascular and macrovascular complications of diabetes. Clin. Diabetes26(2), 77–82 (2008)
Fuchs, K., Kaatze, U.J.: Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. Phys. Chem. B.105(10), 2036–2042 (2001)
Genina, E.A., Bashkatov, A.N., Sinichkin, YuP, Tuchin, V.V.: Optical clearing of skin under action of glycerol: ex vivo and in vivo investigations. Opt. Spectrosc.109(2), 225–231 (2010)
Genina, E.A., Bashkatov, A.N., Sinichkin, YuP, Yanina, IYu., Tuchin, V.V.: Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J. Biomed. Photon. Eng.1(1), 22–58 (2015)
He, R., Wei, H., Gu, H., Zhu, Z., Zhang, Y., Guo, X., Cai, T.: Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study. J. Biomed. Opt.17(10), 101513 (2012)
Heh, D.Y., Tan, E.L.: Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental ADI-FDTD method. Prog. Electromagn. Res. B37, 365–386 (2012)
Kolesnikov, A.S., Kolesnikova, E.A., Popov, A.P., Nazarov, M.M., Shkurinov, A.P., Tuchin, V.V.: In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quantum Electron.44(7), 633–640 (2014)
Lambert, J.L., Pelletier, C.C., Borchert, M.: Glucose determination in human aqueous humor with Raman spectroscopy. J. Biomed. Opt.10(3), 031110 (2005)
Markelz, A.G.: Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J. Sel. Top. Quantum Electron.14(1), 180–190 (2008)
Nazarov, M.M., Shkurinov, A.P., Kuleshov, E.A., Tuchin, V.V.: Terahertz time-domain spectroscopy of biological tissues. Quantum Electron.38, 647–654 (2008)
Nazarov, M., Shkurinov, A., Tuchin, V.V., Zhang, X.-C.: Terahertz tissue spectroscopy and imaging. In: Tuchin, V.V. (ed.) Handbook of Photonics for Biomedical Science, pp. 591–617, CRC Press, USA (2010)
Newnham, D.A., Taday, P.F.: Pulsed terahertz attenuated total reflection spectroscopy. Appl. Spectrosc.62(4), 394–398 (2008)
Ney, M., Abdulhalim, I.: Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. J. Biomed. Opt.16(6), 067006 (2011)
Oh, S.J., Kim, S.-H., Jeong, K., Park, Y., Huh, Y.-M., Son, J.-H., Suh, J.-S.: Measurement depth enhancement in terahertz imaging of biological tissues. Opt. Express21(18), 21299–21305 (2013)
Parrott, E.P.J., Sun, Y., Pickwell-MacPherson, E.: Terahertz spectroscopy: its future role in medical diagnoses. J. Mol. Struct.1006, 66–76 (2011)
Penkov, N., Shvirst, N., Yashin, V., Fesenko Jr, E., Fesenko, E.: Terahertz spectroscopy applied for investigation of water structure. J. Phys. Chem. B119(39), 12664–12670 (2015)
Pickwell, E., Cole, B.E., Fitzgerald, A.J., Pepper, M., Wallace, V.P.: In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol.49, 1595–1607 (2004)
Pickwell, E., Wallace, V.P.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys.39, R301–R310 (2006)
Raicu, V., Feldman, Y.: Dielectric relaxation in biological systems: Physical principles, methods, and applications. Oxford University Press, Oxford (2015)
Rebel, A., Rice, M.A., Fahy, B.G.: The accuracy of point-of-care glucose measurements. J. Diabetes Sci. Technol.6(2), 396–411 (2012)
Ren, Z., Liu, G., Huang, Z.: Determination of glucose concentration based on pulsed laser induced photoacoustic technique and least square fitting algorithm. Proc. SPIE9619, 96190M (2015). doi:10.1117/12.2190601
Schaefer, H., Redelmeier, T.E.: Skin Barrier, Principles of Percutaneous Absorption. Karger AG, Basel (1996)
Shatalova, T.A., Gorobchenko, O.A., Ovsyannikova, T.N., Gladkih, A.I., Nikolov, O.T., Gatash, S.V.: Influence of type 2 diebetes on dielectric characteristics of rat erythrocytes. Biophysical Vestnik.26(1), 94–103 (2011)
Shiraga, K., Ogawa, Y., Kondo, N., Irisawa, A., Imamura, M.: Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Food Chem.140(1–2), 315–320 (2013)
Sigel, P.H., Lee, Y., Pikov, V. (2014) Millimeter-Wave Non-Invasive Monitoring of Glucose in Anesthetized Rats. In: IEEE 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2014): proceedings, T2/D-8 (2014)
Standards of Medical Care in Diabetes—2014. Diabetes Care.37, Suppl. 1, S14–S80 (2014)
Summa, N.M., Eshar, D., Lee-Chow, B., Larrat, S., Brown, D.C.: Comparison of a human portable glucometer and an automated chemistry analyzer for measurement of blood glucose concentration in pet ferrets (Mustela putorius furo). Can. Vet. J.55, 865–869 (2014)
Sun, C-K., Tsai, Y-F., Chen, H.: United States Patent Application Publication. US 2013/0289370 A1 (2013)http://www.faqs.org/patents/app/20130289370#ixzz3HQzAOszh
Truong, B. C. Q., Tuan, H. D., Kha H.H., Nguyen H.T.: (2012) System identification for Terahertz wave’s propagation and reflection in human skin. In: IEEE, 364–368 (2012). doi:10.1109/CCE.2012.6315929
Yada, H., Nagai, M., Tanaka, K.: Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett.464, 166–170 (2008)
Zanon, M., Giovanni Sparacino, G., Facchinetti, A., Talary, M.S., Mueller, M., Caduff, A., Cobelli, C.: Non-invasive continuous glucose monitoring with multi-sensor systems: a monte carlo-based methodology for assessing calibration robustness. Sensors13, 7279–7295 (2013). doi:10.3390/s130607279
Zaytsev, K.I., Kudrin, K.G., Karasik, V.E., Reshetov, I.V., Yurchenko, S.O.: In vivo terahertz spectroscopy of pigmentary skin nevi: pilot study of non-invasive early diagnosis of dysplasia. Appl. Phys. Lett.106, 053702 (2015a). doi:10.1063/1.4907350
Zaytsev, K.I., Gavdush, A.A., Chernomyrdin, N.V., Yurchenko, S.O.: Highly Accurate in Vivo Terahertz Spectroscopy of Healthy Skin: variation of Refractive Index and Absorption Coefficient Along the Human Body. IEEE Trans. Terahertz Sci. Technol.5(5), 817–827 (2015b)
Acknowledgments
This work has been supported by RFBR (grant No. 13-02-01364) and The Tomsk State University Academic D.I. Mendeleev Fund Program.
Author information
Authors and Affiliations
Institute of Laser Physics of SB RAS, pr. Lavrentyeva, 13/3, Novosibirsk, Russia, 630090
Olga Cherkasova
Institute on Laser and Information Technologies of RAS, 1 Svyatooserskaya St., Shatura, Russia, 142092
Maxim Nazarov & Alexander Shkurinov
Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, Russia, 119991
Alexander Shkurinov
National Research Tomsk State University, Lenina Avenue, 36, Tomsk, Russia, 634050
Alexander Shkurinov
- Olga Cherkasova
You can also search for this author inPubMed Google Scholar
- Maxim Nazarov
You can also search for this author inPubMed Google Scholar
- Alexander Shkurinov
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toOlga Cherkasova.
Additional information
This article is part of the Topical Collection on Laser technologies and laser applications.
Guest Edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.
Rights and permissions
About this article
Cite this article
Cherkasova, O., Nazarov, M. & Shkurinov, A. Noninvasive blood glucose monitoring in the terahertz frequency range.Opt Quant Electron48, 217 (2016). https://doi.org/10.1007/s11082-016-0490-5
Received:
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative