653Accesses
Abstract
Graphene-based composites represent a new class of materials with potential for many applications. Metal, semiconductor, or any polymer properties can be tuned by attaching it to graphene. Here, a new route for fabrication of graphene based composites thin films has been explored. Graphene flakes (<4 layers) and a well-known semiconductor zinc oxide (ZnO) (<50 nm particle size) have been dispersed inN-methylpyrrolidone and ethanol, respectively. Thin film of graphene flakes is deposited and decorated with ZnO nanoparticles to fabricate graphene/ZnO composite thin film on silicon substrate by electro hydrodynamic atomization technique. Graphene/ZnO composite thin film has been characterized morphologically, structurally and chemically. To investigate electronic behavior of the composite thin film, it is deployed as cathode in a diode device i.e. indium tin oxide/poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)/polydioctylfluorene-benzothiadiazole/(graphene/ZnO). The J–V analysis of diode device has shown that at voltage of 1 V, the current density in organic structure is at low value of 4.69 × 10−3 A/cm2 and when voltage applied voltage is further increased; the device current density has increased by the order of 200 that is 1.034 A/cm2 at voltage of 12 V.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.










Similar content being viewed by others
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science306, 666–669 (2004)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature438, 197–200 (2005)
A.K. Geim, K.S. Novoselov, Nat. Mater.6, 183–191 (2007)
A.K. Geim, Science324, 1530–1534 (2009)
D.R. Dreyer et al., Angew. Chem. Int. Ed.49, 9336–9344 (2010)
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A.102, 10451–10453 (2005)
Y. Si, E.T. Samulski, Chem. Mater.20, 6792–6797 (2008)
R. Muszynski, B. Seger, P.V. Kamat, J Phys Chem C.112, 5263–5266 (2008)
N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Nanotechnology19, 445201–445206 (2008)
G. Williams, B. Seger, P.V. Kamat, ACS Nano2, 1487–1491 (2008)
C. Nethravathi, B. Viswanath, C. Shivakumara, N. Mahadevaiah, M. Rajamathi, Carbon46, 1773–1781 (2008)
C. Petit, T.J. Bandosz, J Phys Chem C113, 3800–3809 (2009)
S. Park et al., ACS Nano2, 572 (2008)
S. Park et al., J. Phys. Chem. C113, 1580 (2009)
Motilal Mathesh et al., J. Mater. Chem. C1, 3084–3090 (2013)
I.V. Lightcap et al., Nano Lett.10, 577–583 (2010)
Sheng-Tao Yang et al., J. Colloid Interface Sci.351, 122–127 (2010)
G.C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol.20, S22–S34 (2005)
F. Lu, W. Cai, Y. Zhang, Adv. Funct. Mater.18, 1047–1056 (2008)
C.Y. Lu, S.J. Chang, S.P. Chang, C.T. Lee, C.F. Kuo, H.M. Chang, H.Z. Chiou, C.L. Hsu, I.C. Chen, Appl. Phys. Lett.89, 153101–153103 (2006)
J.H. Na, M. Kitamura, M. Arita, Y. Arakawa, Appl. Phys. Lett.95, 253303–253305 (2009)
W.I. Park, G.C. Yi, Adv. Mater.16, 87–90 (2004)
P. Sudhagar, R.S. Kumar, J.H. Jung, W. Cho, R. Sathyamoorthy, J. Won, Y.S. Kang, Mater. Res. Bull.46, 1473–1479 (2011)
J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators, B: Chem132, 334–339 (2008)
S.B. Park, B.G. Kim, J.Y. Kim, T.H. Jung, D.G. Lim, J.H. Park, J.G. Park, Appl. Phys. A102, 169–172 (2011)
Z.L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, Mater. Sci. Eng. R70, 320–329 (2010)
M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Webber, R. Russo, P. Yang, Science292, 1897–1899 (2001)
Y. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T. Wee, J.T. Thong, Sow. CH. Adv. Mater.18, 587–592 (2006)
Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small6, 307–312 (2010)
W.T. Zheng, Y.M. Ho, H.W. Tian, M. Wen, J.L. Qi, Li YA J Phys Chem C.113, 9164–9168 (2009)
J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Appl. Surf. Sci.256, 2826–2830 (2010)
J. Zeleny, Phys. Rev.3, 69 (1914)
G.I. Taylor, Proc. R. Soc. LondonA 313, 453–475 (1969)
M. Cloupeau, B. Prunet-Foch, J. Electrostat.25, 165 (1990)
K. Rahman, A. Khan, N.M. Nam, K.-H. Choi, D.-S. Kim, Int. J. Precis. Eng. Manuf.12, 663 (2011)
A. Jaworek, A. Krupa, J. Aerosol Sci.30, 873 (1999)
K.H. Choi, A. Ali, H.C. Kim, M.T. Hyun, J. Korean Phys. Soc.62, 269 (2013)
K.H. Choi, A. Ali et al., J. Mater. Sci.: Mater. Electron24, 4893 (2013)
N.M. Muhammad, S. Sundharam, H.-W. Dang, A. Lee, B.-H. Ryu, K.-H. Choi, Curr. Appl. Phys.11, S68 (2011)
Adnan Ali et al. Appl. Phys. A. doi10.1007/s00339-013-8136-y
K.H. Choi, S. Khan, H.W. Dang, Y.H. Doh, S.J. Hong, Jpn. J. Appl. Phys49, 05EC08 (2010)
N.A. Kotov, M. Dékány, J.H. Fendler, Adv. Mater.8, 637–641 (1996)
X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang, D. Chen, Macromolecules43, 9411–9416 (2010)
A. Khan, K. Rahman, D.S. Kim, K.H. Choi, J. Mater. Process. Technol.212, 700 (2011)
K. Rahman, J.B. Ko, S. Khan, D.S. Kim, K.H. Choi, J. Mech. Sci. Technol.24, 307 (2010)
K.H. Choi, A. Ali, A. Rahman, N.M. Mohammad, K. Rahman, A. Khan, S. Khan, D. Kim, J Micromech Microengin20, 075033 (2010)
K. Rahman, A. Khan, N.M. Nam, K.H. Choi, D.S. Kim, Int J Precis Eng Man J.4, 663 (2011)
R. Hartman, D. Brunner, D. Camelot, J. Marijnissen, B. Scar, lett J. Aerosol Sci1, 65 (2000)
I. Hayati, A. Bailey, T.F. Tadros, Nature319, 41–43 (1986)
A.M. Ganan-Calvo, J. Davila, A. Barrero, J. Aerosol Sci.28, 249 (1997)
S. Mohseni Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem.19, 841–845 (2012)
H.M. Ju, S.H. Choi, S.H. Huh, J. Korean Phys. Soc57, 1649–1652 (2010)
O. Akhavan, Carbon49, 11–18 (2011)
D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett.7, 238–242 (2007)
I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett.7, 2645–2649 (2007)
X. Wang, L.J. Zhi, N. Tsao, J.L. Tomovic, K. Mullen, Angew. Chem. Int. Ed.47, 2990–2992 (2008)
X.M. Yang, Z.Z. Gu, Z.H. Lu, Y. Wei, Appl. Phys. A59, 115–117 (1994)
J. Tauc (ed.),Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)
Acknowledgments
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0026163) and this research was supported by the 2013 scientific promotion program funded by Jeju National Universtiy.
Author information
Authors and Affiliations
Department of Mechatronics Engineering, Jeju National University, Cheju, 690-756, Korea
Adnan Ali, Kamran Ali & Kyung Hyun Choi
Department of Mechanical Engineering, Jeju National University, Cheju, 690-756, Korea
Ki-Rin Kwon & Myung Taek Hyun
- Adnan Ali
You can also search for this author inPubMed Google Scholar
- Kamran Ali
You can also search for this author inPubMed Google Scholar
- Ki-Rin Kwon
You can also search for this author inPubMed Google Scholar
- Myung Taek Hyun
You can also search for this author inPubMed Google Scholar
- Kyung Hyun Choi
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toKyung Hyun Choi.
Rights and permissions
About this article
Cite this article
Ali, A., Ali, K., Kwon, KR.et al. Electrohydrodynamic atomization approach to graphene/zinc oxide film fabrication for application in electronic devices.J Mater Sci: Mater Electron25, 1097–1104 (2014). https://doi.org/10.1007/s10854-013-1693-1
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative