Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Electrohydrodynamic atomization approach to graphene/zinc oxide film fabrication for application in electronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene-based composites represent a new class of materials with potential for many applications. Metal, semiconductor, or any polymer properties can be tuned by attaching it to graphene. Here, a new route for fabrication of graphene based composites thin films has been explored. Graphene flakes (<4 layers) and a well-known semiconductor zinc oxide (ZnO) (<50 nm particle size) have been dispersed inN-methylpyrrolidone and ethanol, respectively. Thin film of graphene flakes is deposited and decorated with ZnO nanoparticles to fabricate graphene/ZnO composite thin film on silicon substrate by electro hydrodynamic atomization technique. Graphene/ZnO composite thin film has been characterized morphologically, structurally and chemically. To investigate electronic behavior of the composite thin film, it is deployed as cathode in a diode device i.e. indium tin oxide/poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)/polydioctylfluorene-benzothiadiazole/(graphene/ZnO). The J–V analysis of diode device has shown that at voltage of 1 V, the current density in organic structure is at low value of 4.69 × 10−3 A/cm2 and when voltage applied voltage is further increased; the device current density has increased by the order of 200 that is 1.034 A/cm2 at voltage of 12 V.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science306, 666–669 (2004)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature438, 197–200 (2005)

    Article  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, Nat. Mater.6, 183–191 (2007)

    Article  Google Scholar 

  4. A.K. Geim, Science324, 1530–1534 (2009)

    Article  Google Scholar 

  5. D.R. Dreyer et al., Angew. Chem. Int. Ed.49, 9336–9344 (2010)

    Article  Google Scholar 

  6. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A.102, 10451–10453 (2005)

    Article  Google Scholar 

  7. Y. Si, E.T. Samulski, Chem. Mater.20, 6792–6797 (2008)

    Article  Google Scholar 

  8. R. Muszynski, B. Seger, P.V. Kamat, J Phys Chem C.112, 5263–5266 (2008)

    Article  Google Scholar 

  9. N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Nanotechnology19, 445201–445206 (2008)

    Article  Google Scholar 

  10. G. Williams, B. Seger, P.V. Kamat, ACS Nano2, 1487–1491 (2008)

    Article  Google Scholar 

  11. C. Nethravathi, B. Viswanath, C. Shivakumara, N. Mahadevaiah, M. Rajamathi, Carbon46, 1773–1781 (2008)

    Article  Google Scholar 

  12. C. Petit, T.J. Bandosz, J Phys Chem C113, 3800–3809 (2009)

    Article  Google Scholar 

  13. S. Park et al., ACS Nano2, 572 (2008)

    Article  Google Scholar 

  14. S. Park et al., J. Phys. Chem. C113, 1580 (2009)

    Article  Google Scholar 

  15. Motilal Mathesh et al., J. Mater. Chem. C1, 3084–3090 (2013)

    Article  Google Scholar 

  16. I.V. Lightcap et al., Nano Lett.10, 577–583 (2010)

    Article  Google Scholar 

  17. Sheng-Tao Yang et al., J. Colloid Interface Sci.351, 122–127 (2010)

    Article  Google Scholar 

  18. G.C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol.20, S22–S34 (2005)

    Article  Google Scholar 

  19. F. Lu, W. Cai, Y. Zhang, Adv. Funct. Mater.18, 1047–1056 (2008)

    Article  Google Scholar 

  20. C.Y. Lu, S.J. Chang, S.P. Chang, C.T. Lee, C.F. Kuo, H.M. Chang, H.Z. Chiou, C.L. Hsu, I.C. Chen, Appl. Phys. Lett.89, 153101–153103 (2006)

    Article  Google Scholar 

  21. J.H. Na, M. Kitamura, M. Arita, Y. Arakawa, Appl. Phys. Lett.95, 253303–253305 (2009)

    Article  Google Scholar 

  22. W.I. Park, G.C. Yi, Adv. Mater.16, 87–90 (2004)

    Article  Google Scholar 

  23. P. Sudhagar, R.S. Kumar, J.H. Jung, W. Cho, R. Sathyamoorthy, J. Won, Y.S. Kang, Mater. Res. Bull.46, 1473–1479 (2011)

    Article  Google Scholar 

  24. J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators, B: Chem132, 334–339 (2008)

    Article  Google Scholar 

  25. S.B. Park, B.G. Kim, J.Y. Kim, T.H. Jung, D.G. Lim, J.H. Park, J.G. Park, Appl. Phys. A102, 169–172 (2011)

    Article  Google Scholar 

  26. Z.L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, Mater. Sci. Eng. R70, 320–329 (2010)

    Article  Google Scholar 

  27. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Webber, R. Russo, P. Yang, Science292, 1897–1899 (2001)

    Article  Google Scholar 

  28. Y. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T. Wee, J.T. Thong, Sow. CH. Adv. Mater.18, 587–592 (2006)

    Article  Google Scholar 

  29. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small6, 307–312 (2010)

    Article  Google Scholar 

  30. W.T. Zheng, Y.M. Ho, H.W. Tian, M. Wen, J.L. Qi, Li YA J Phys Chem C.113, 9164–9168 (2009)

    Article  Google Scholar 

  31. J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Appl. Surf. Sci.256, 2826–2830 (2010)

    Article  Google Scholar 

  32. J. Zeleny, Phys. Rev.3, 69 (1914)

    Article  Google Scholar 

  33. G.I. Taylor, Proc. R. Soc. LondonA 313, 453–475 (1969)

    Article  Google Scholar 

  34. M. Cloupeau, B. Prunet-Foch, J. Electrostat.25, 165 (1990)

    Article  Google Scholar 

  35. K. Rahman, A. Khan, N.M. Nam, K.-H. Choi, D.-S. Kim, Int. J. Precis. Eng. Manuf.12, 663 (2011)

    Article  Google Scholar 

  36. A. Jaworek, A. Krupa, J. Aerosol Sci.30, 873 (1999)

    Article  Google Scholar 

  37. K.H. Choi, A. Ali, H.C. Kim, M.T. Hyun, J. Korean Phys. Soc.62, 269 (2013)

    Article  Google Scholar 

  38. K.H. Choi, A. Ali et al., J. Mater. Sci.: Mater. Electron24, 4893 (2013)

    Google Scholar 

  39. N.M. Muhammad, S. Sundharam, H.-W. Dang, A. Lee, B.-H. Ryu, K.-H. Choi, Curr. Appl. Phys.11, S68 (2011)

    Article  Google Scholar 

  40. Adnan Ali et al. Appl. Phys. A. doi10.1007/s00339-013-8136-y

  41. K.H. Choi, S. Khan, H.W. Dang, Y.H. Doh, S.J. Hong, Jpn. J. Appl. Phys49, 05EC08 (2010)

    Google Scholar 

  42. N.A. Kotov, M. Dékány, J.H. Fendler, Adv. Mater.8, 637–641 (1996)

    Article  Google Scholar 

  43. X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang, D. Chen, Macromolecules43, 9411–9416 (2010)

    Article  Google Scholar 

  44. A. Khan, K. Rahman, D.S. Kim, K.H. Choi, J. Mater. Process. Technol.212, 700 (2011)

    Article  Google Scholar 

  45. K. Rahman, J.B. Ko, S. Khan, D.S. Kim, K.H. Choi, J. Mech. Sci. Technol.24, 307 (2010)

    Article  Google Scholar 

  46. K.H. Choi, A. Ali, A. Rahman, N.M. Mohammad, K. Rahman, A. Khan, S. Khan, D. Kim, J Micromech Microengin20, 075033 (2010)

    Article  Google Scholar 

  47. K. Rahman, A. Khan, N.M. Nam, K.H. Choi, D.S. Kim, Int J Precis Eng Man J.4, 663 (2011)

    Article  Google Scholar 

  48. R. Hartman, D. Brunner, D. Camelot, J. Marijnissen, B. Scar, lett J. Aerosol Sci1, 65 (2000)

    Article  Google Scholar 

  49. I. Hayati, A. Bailey, T.F. Tadros, Nature319, 41–43 (1986)

    Article  Google Scholar 

  50. A.M. Ganan-Calvo, J. Davila, A. Barrero, J. Aerosol Sci.28, 249 (1997)

    Article  Google Scholar 

  51. S. Mohseni Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem.19, 841–845 (2012)

    Article  Google Scholar 

  52. H.M. Ju, S.H. Choi, S.H. Huh, J. Korean Phys. Soc57, 1649–1652 (2010)

    Article  Google Scholar 

  53. O. Akhavan, Carbon49, 11–18 (2011)

    Article  Google Scholar 

  54. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett.7, 238–242 (2007)

    Article  Google Scholar 

  55. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett.7, 2645–2649 (2007)

    Article  Google Scholar 

  56. X. Wang, L.J. Zhi, N. Tsao, J.L. Tomovic, K. Mullen, Angew. Chem. Int. Ed.47, 2990–2992 (2008)

    Article  Google Scholar 

  57. X.M. Yang, Z.Z. Gu, Z.H. Lu, Y. Wei, Appl. Phys. A59, 115–117 (1994)

    Article  Google Scholar 

  58. J. Tauc (ed.),Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0026163) and this research was supported by the 2013 scientific promotion program funded by Jeju National Universtiy.

Author information

Authors and Affiliations

  1. Department of Mechatronics Engineering, Jeju National University, Cheju, 690-756, Korea

    Adnan Ali, Kamran Ali & Kyung Hyun Choi

  2. Department of Mechanical Engineering, Jeju National University, Cheju, 690-756, Korea

    Ki-Rin Kwon & Myung Taek Hyun

Authors
  1. Adnan Ali

    You can also search for this author inPubMed Google Scholar

  2. Kamran Ali

    You can also search for this author inPubMed Google Scholar

  3. Ki-Rin Kwon

    You can also search for this author inPubMed Google Scholar

  4. Myung Taek Hyun

    You can also search for this author inPubMed Google Scholar

  5. Kyung Hyun Choi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKyung Hyun Choi.

Rights and permissions

About this article

Cite this article

Ali, A., Ali, K., Kwon, KR.et al. Electrohydrodynamic atomization approach to graphene/zinc oxide film fabrication for application in electronic devices.J Mater Sci: Mater Electron25, 1097–1104 (2014). https://doi.org/10.1007/s10854-013-1693-1

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp