Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, milling of the Inconel 718 superalloy was performed in dry conditions with the aim of reducing the adverse effects of the coolant on the environment. As is known, cutting tools quickly complete their life due to the high-temperature on the cutting zone in the dry condition milling process of hard materials. The nanocomposite TiAlSiN/TiSiN/TiAlN thin film was deposited on the cutting tools and then subjected to cryogenic heat treatment to increase the tool life of the used cutting tools. As a result, the life of the cutting tools has been increased by the thin film coating and cryogenic heat treatment applied to the cutting tools. After cryogenic treatment at a cutting speed of 30 m/min, the tool life of uncoated, TiN-, nanocomposite TiAlSiN/TiSiN/TiAlN-, and TiAlN-coated carbide cutting tools increases by 54, 110, 29, and 30%. The applied cryogenic heat treatment resulted in an 18% increase in the hardη phase of the structure of the carbide cutting tools. In addition, cryogenic heat treatment improved the adhesion of hard coatings to the substrate. The EDS analysis applied to the worn tools revealed that the mechanisms causing wear of the cutting tools were abrasion and adhesion.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54.https://doi.org/10.1016/j.ijmachtools.2015.10.001

    Article  Google Scholar 

  2. Lu X, Jia Z, Wang H, Si L, Liu Y, Wu W (2016) Tool wear appearance and failure mechanism of coated carbide tools in micro-milling of Inconel 718 super alloy. Ind Lubr Tribol 68:267–277.https://doi.org/10.1108/ILT-07-2015-0114

    Article  Google Scholar 

  3. Kyncl J, Molotovnik A (2015) The research of the surface profile after profiling of superalloys. Energy Procedia 100:853–860.https://doi.org/10.1016/j.proeng.2015.01.441

    Article  Google Scholar 

  4. Liao Y-S, Liao C-H, Lin H-M (2017) Study of oil-water ratio and flow rate of MQL fluid in high speed milling of Inconel 718. Int J Precis Eng Manuf 18:257–262.https://doi.org/10.1007/s12541-017-0033-4

    Article  Google Scholar 

  5. de Paula Oliveira G, Cindra Fonseca M, Araujo AC (2017) Analysis of residual stress and cutting force in end milling of Inconel 718 using conventional flood cooling and minimum quantity lubrication. Int J Adv Manuf Technol 92:1–8.https://doi.org/10.1007/s00170-017-0381-3

    Article  Google Scholar 

  6. Uçak N, Çiçek A (2018) The effects of cutting conditions on cutting temperature and hole quality in drilling of Inconel 718 using solid carbide drills. J Manuf Process 31:662–673.https://doi.org/10.1016/J.JMAPRO.2018.01.003

    Article  Google Scholar 

  7. Zhang B, Njora MJ, Sato Y (2018) High-speed turning of Inconel 718 by using TiAlN- and (Al, Ti) N-coated carbide tools. Int J Adv Manuf Technol.https://doi.org/10.1007/s00170-018-1765-8

  8. Kuppuswamy R, Zunega J, Naidoo S (2017) Flank wear assessment on discrete machining process behavior for Inconel 718. Int J Adv Manuf Technol 93:2097–2109.https://doi.org/10.1007/s00170-017-0623-4

    Article  Google Scholar 

  9. Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77.https://doi.org/10.1016/j.ijmachtools.2012.08.001

    Article  Google Scholar 

  10. Ucun I, Aslantas K, Bedir F (2015) The performance of DLC-coated and uncoated ultra-fine carbide tools in micromilling of Inconel 718. Precis Eng 41:135–144.https://doi.org/10.1016/j.precisioneng.2015.01.002

    Article  Google Scholar 

  11. Park K-H, Yang G-D, Lee DY (2015) Tool wear analysis on coated and uncoated carbide tools in inconel machining. Int J Precis Eng Manuf 16:1639–1645.https://doi.org/10.1007/s12541-015-0215-x

    Article  Google Scholar 

  12. Dong X (2013) Handbook of manufacturing engineering and technology.https://doi.org/10.1007/978-1-4471-4976-7_49-1

  13. El-Hofy H (2014) Metal cutting operations and terminology

  14. Zetek M, Česáková I, Švarc V (2014) Increasing cutting tool life when machining inconel 718. Procedia Eng 69:1115–1124.https://doi.org/10.1016/j.proeng.2014.03.099

    Article  Google Scholar 

  15. Wakabayashi T, Maeda Y, Iwatsuka K, Yazawa T (2014) Tool wear characteristics for near-dry cutting of Inconel 718. Key Eng Mater 625:282–287.https://doi.org/10.4028/www.scientific.net/KEM.625.282

    Article  Google Scholar 

  16. Vogtel P, Klocke F, Lung D (2014) High performance machining of profiled slots in nickel-based-superalloys. Procedia CIRP 14:54–59.https://doi.org/10.1016/j.procir.2014.03.061

    Article  Google Scholar 

  17. Thakur A, Gangopadhyay S, Maity KP (2014) Effect of cutting speed and tool coating on machined surface integrity of ni-based super alloy. Procedia CIRP 14:541–545.https://doi.org/10.1016/j.procir.2014.03.045

    Article  Google Scholar 

  18. Razak NH, Chen ZW, Pasang T (2016) Progression of tool deterioration and related cutting force during milling of 718Plus superalloy using cemented tungsten carbide tools. Int J Adv Manuf Technol 86:3203–3216.https://doi.org/10.1007/s00170-016-8438-2

    Article  Google Scholar 

  19. Li W, Guo YB, Barkey ME, Jordon JB (2014) Effect tool wear during end milling on the surface integrity and fatigue life of Inconel 718. Procedia CIRP 14:546–551.https://doi.org/10.1016/j.procir.2014.03.056

    Article  Google Scholar 

  20. Kasim MS, Che Haron CH, Ghani JA, Hadi MA, Izamshah R, Anand TJS, Mohamed SB (2016) Cost evaluation on performance of a PVD coated cutting tool during end-milling of Inconel 718 under MQL conditions. Trans Inst Met Finish 94:175–181.https://doi.org/10.1080/00202967.2016.1179472

    Article  Google Scholar 

  21. Krolczyk GM, Nieslony P, Maruda RW, Wojciechowski S (2017) Dry cutting effect in turning of a duplex stainless steel as a key factor in clean production. J Clean Prod 142:3343–3354.https://doi.org/10.1016/j.jclepro.2016.10.136

    Article  Google Scholar 

  22. Wojciechowski S, Maruda WR, Krolczyk GM, Niesłony P (2018) Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis Eng 51:582–596.https://doi.org/10.1016/J.PRECISIONENG.2017.10.014

    Article  Google Scholar 

  23. Twardowski P, Legutko S, Krolczyk GM, Hloch S (2015) Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling. Advances in. Mech Eng 7:1687814015590216.https://doi.org/10.1177/1687814015590216

    Google Scholar 

  24. Kursuncu B, Yaras A (2017) Assessment of the effect of borax and boric acid additives in cutting fluids on milling of AISI O2 using MQL system. Int J Adv Manuf Technol 1–9

  25. Deshpande YV, Andhare AB, Padole PM (2018) Experimental results on the performance of cryogenic treatment of tool and minimum quantity lubrication for machinability improvement in the turning of Inconel 718. J Braz Soc Mech Sci Eng 40:6.https://doi.org/10.1007/s40430-017-0920-8

    Article  Google Scholar 

  26. Inspektor A, Salvador PA (2014) Architecture of PVD coatings for metal cutting applications: a review. Surf Coat Technol 257:138–153.https://doi.org/10.1016/j.surfcoat.2014.08.068

    Article  Google Scholar 

  27. Hao Z, Fan Y, Lin J, Yu Z (2015) Wear characteristics and wear control method of PVD-coated carbide tool in turning Inconel 718. Int J Adv Manuf Technol 78:1329–1336.https://doi.org/10.1007/s00170-014-6752-0

    Article  Google Scholar 

  28. Kursuncu B, Caliskan H, Guven SY, Panjan P (2017) Wear behavior of multilayer nanocomposite TiAlSiN/TiSiN/TiAlN coated carbide cutting tool during face milling of inconel 718 superalloy. J Nano Res 47:11–16.https://doi.org/10.4028/www.scientific.net/JNanoR.47.11

    Article  Google Scholar 

  29. Bhatt A, Attia H, Vargas R, Thomson V (2010) Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol Int 43:1113–1121.https://doi.org/10.1016/j.triboint.2009.12.053

    Article  Google Scholar 

  30. Devillez A, Le Coz G, Dominiak S, Dudzinski D (2011) Dry machining of Inconel 718, workpiece surface integrity. J Mater Process Technol 211:1590–1598.https://doi.org/10.1016/j.jmatprotec.2011.04.011

    Article  Google Scholar 

  31. Kalinga Simant Bal B, Maity K (2012) Performance Appraisal of Cryo-Treated Tool By Performance Appraisal of Cryo-Treated Tool By Turning Operation

  32. Akincioğlu S, Gökkaya H, İlyas U (2015) A review of cryogenic treatment on cutting tools. Int J Adv Manuf Technol 78:1609–1627.https://doi.org/10.1007/s00170-014-6755-x

    Article  Google Scholar 

  33. Gu K, Wang J, Zhou Y (2014) Effect of cryogenic treatment on wear resistance of Ti-6Al-4V alloy for biomedical applications. J Mech Behav Biomed Mater 30:131–139.https://doi.org/10.1016/j.jmbbm.2013.11.003

    Article  Google Scholar 

  34. Vadivel K, Rudramoorthy R (2009) Performance analysis of cryogenically treated coated carbide inserts. Int J Adv Manuf Technol 42:222–232.https://doi.org/10.1007/s00170-008-1597-z

    Article  Google Scholar 

  35. Firouzdor V, Nejati E, Khomamizadeh F (2008) Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J Mater Process Technol 206:467–472.https://doi.org/10.1016/j.jmatprotec.2007.12.072

    Article  Google Scholar 

  36. Senthilkumar D, Rajendran I (2011) Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel. J Iron Steel Res Int 18:53–59.https://doi.org/10.1016/S1006-706X(12)60034-X

    Article  Google Scholar 

  37. Podgornik B, Leskovsek V, Vizintin J (2009) Influence of deep-cryogenic treatment on tribological properties of P/M high-speed steel. Mater Manuf Process 24:734–738.https://doi.org/10.1080/10426910902809339

    Article  Google Scholar 

  38. Chopra SA, Sargade VG (2015) Metallurgy behind the cryogenic treatment of cutting tools: an overview. Mater Today Proc 2:1814–1824.https://doi.org/10.1016/j.matpr.2015.07.119

    Article  Google Scholar 

  39. Patil HB, Chavan PB, Kazi SH (2013) Effects of cryogenic on tool steels—a review. Int J Mech Prod Eng 31–36

  40. Gill SS, Singh H, Singh R, Singh J (2011) Flank wear and machining performance of cryogenically treated tungsten carbide inserts. Mater Manuf Process 26:1430–1441.https://doi.org/10.1080/10426914.2011.557128

    Article MathSciNet  Google Scholar 

  41. Bensely A, Prabhakaran A, Mohan Lal D, Nagarajan G (2005) Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics 45:747–754.https://doi.org/10.1016/j.cryogenics.2005.10.004

    Article  Google Scholar 

  42. Mohan Lal D, Renganarayanan S, Kalanidhi A (2001) Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 41:149–155.https://doi.org/10.1016/S0011-2275(01)00065-0

    Article  Google Scholar 

  43. Gogte CL, Iyer KM, Paretkar RK, Peshwe DR (2009) Deep subzero processing of metals and alloys: evolution of microstructure of AISI T42 tool steel. Mater Manuf Process 24:718–722.https://doi.org/10.1080/10426910902806210

    Article  Google Scholar 

  44. Yong AYL, Seah KHW, Rahman M (2006) Performance evaluation of cryogenically treated tungsten carbide tools in turning. Int J Mach Tools Manuf 46:2051–2056.https://doi.org/10.1016/j.ijmachtools.2006.01.002

    Article  Google Scholar 

  45. Gill SS, Singh J, Singh H, Singh R (2012) Metallurgical and mechanical characteristics of cryogenically treated tungsten carbide (WC-Co). Int J Adv Manuf Technol 58:119–131.https://doi.org/10.1007/s00170-011-3369-4

    Article  Google Scholar 

  46. SreeramaReddy TV, Sornakumar T, VenkataramaReddy M, Venkatram R (2009) Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts. Int J Refract Met Hard Mater 27:181–185.https://doi.org/10.1016/j.ijrmhm.2008.04.007

    Article  Google Scholar 

  47. Özbek NA, Çiçek A, Gülesin M, Özbek O (2016) Effect of cutting conditions on wear performance of cryogenically treated tungsten carbide inserts in dry turning of stainless steel. Tribol Int 94:223–233.https://doi.org/10.1016/j.triboint.2015.08.024

    Article  Google Scholar 

  48. Çalişkan H, Küçükköse M (2015) The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy. Int J Refract Met Hard Mater 50:304–312.https://doi.org/10.1016/j.ijrmhm.2015.02.012

    Article  Google Scholar 

  49. Chetan, Ghosh S, Rao PV (2017) Performance evaluation of deep cryogenic processed carbide inserts during dry turning of Nimonic 90 aerospace grade alloy. Tribol Int 115:397–408.https://doi.org/10.1016/J.TRIBOINT.2017.06.013

    Article  Google Scholar 

  50. Thamizhmanii S, Nagib M, Sulaiman H (2011) Performance of deep cryogenically treated and non-treated PVD inserts in milling. J Achiev Mater Manuf Eng 49:460–466

    Google Scholar 

  51. Yong AYL, Seah KHW, Rahman M (2007) Performance of cryogenically treated tungsten carbide tools in milling operations. Int J Adv Manuf Technol 32:638–643.https://doi.org/10.1007/s00170-005-0379-0

    Article  Google Scholar 

  52. Caliskan H, Celil CC, Panjan P (2016) Effect of multilayer nanocomposite TiAlSiN/TiSiN/TiAlN coating on wear behavior of carbide tools in the milling of hardened AISI D2 steel. J Nano Res 38:9–17.https://doi.org/10.4028/www.scientific.net/JNanoR.38.9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Unit of Scientific Research Projects of Suleyman Demirel University, Turkey (project 3563-D2-13).

Author information

Authors and Affiliations

  1. Department of Mechanical Engineering, Kutlubey Campus, Bartin University, 74100, Bartin, Turkey

    Bilal Kursuncu

  2. Ozaylar Machinery Industry, 06374, Ankara, Turkey

    Halil Caliskan

  3. Department of Mechanical Engineering, Cunur Campus, Suleyman Demirel University, 32100, Isparta, Turkey

    Sevki Yilmaz Guven

  4. Department of Thin Films and Surfaces, Jozef Stefan Institute, Jamova 19, 1000, Ljubljana, Slovenia

    Peter Panjan

Authors
  1. Bilal Kursuncu

    You can also search for this author inPubMed Google Scholar

  2. Halil Caliskan

    You can also search for this author inPubMed Google Scholar

  3. Sevki Yilmaz Guven

    You can also search for this author inPubMed Google Scholar

  4. Peter Panjan

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toBilal Kursuncu.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kursuncu, B., Caliskan, H., Guven, S.Y.et al. Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment.Int J Adv Manuf Technol97, 467–479 (2018). https://doi.org/10.1007/s00170-018-1931-z

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp