Movatterモバイル変換


[0]ホーム

URL:


Navigation

Canny Edge Detector

Goal

In this tutorial you will learn how to:

  • Use the OpenCV functionCanny to implement the Canny Edge Detector.

Theory

  1. TheCanny Edge detector was developed by John F. Canny in 1986. Also known to many as theoptimal detector, Canny algorithm aims to satisfy three main criteria:
    • Low error rate: Meaning a good detection of only existent edges.
    • Good localization: The distance between edge pixels detected and real edge pixels have to be minimized.
    • Minimal response: Only one detector response per edge.

Steps

  1. Filter out any noise. The Gaussian filter is used for this purpose. An example of a Gaussian kernel ofsize = 5 that might be used is shown below:

    K = \dfrac{1}{159}\begin{bmatrix}          2 & 4 & 5 & 4 & 2 \\          4 & 9 & 12 & 9 & 4 \\          5 & 12 & 15 & 12 & 5 \\          4 & 9 & 12 & 9 & 4 \\          2 & 4 & 5 & 4 & 2                  \end{bmatrix}

  2. Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:

    1. Apply a pair of convolution masks (inx andy directions:

      G_{x} = \begin{bmatrix}-1 & 0 & +1  \\-2 & 0 & +2  \\-1 & 0 & +1\end{bmatrix}G_{y} = \begin{bmatrix}-1 & -2 & -1  \\0 & 0 & 0  \\+1 & +2 & +1\end{bmatrix}

    2. Find the gradient strength and direction with:

      \begin{array}{l}G = \sqrt{ G_{x}^{2} + G_{y}^{2} } \\\theta = \arctan(\dfrac{ G_{y} }{ G_{x} })\end{array}

      The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)

  3. Non-maximum suppression is applied. This removes pixels that are not considered to be part of an edge. Hence, only thin lines (candidate edges) will remain.

  4. Hysteresis: The final step. Canny does use two thresholds (upper and lower):

    1. If a pixel gradient is higher than theupper threshold, the pixel is accepted as an edge
    2. If a pixel gradient value is below thelower threshold, then it is rejected.
    3. If the pixel gradient is between the two thresholds, then it will be accepted only if it is connected to a pixel that is above theupper threshold.

    Canny recommended aupper:lower ratio between 2:1 and 3:1.

  5. For more details, you can always consult your favorite Computer Vision book.

Code

  1. What does this program do?
    • Asks the user to enter a numerical value to set the lower threshold for ourCanny Edge Detector (by means of a Trackbar)
    • Applies theCanny Detector and generates amask (bright lines representing the edges on a black background).
    • Applies the mask obtained on the original image and display it in a window.
  2. The tutorial code’s is shown lines below. You can also download it fromhere
#include"opencv2/imgproc/imgproc.hpp"#include"opencv2/highgui/highgui.hpp"#include<stdlib.h>#include<stdio.h>usingnamespacecv;/// Global variablesMatsrc,src_gray;Matdst,detected_edges;intedgeThresh=1;intlowThreshold;intconstmax_lowThreshold=100;intratio=3;intkernel_size=3;char*window_name="Edge Map";/** * @function CannyThreshold * @brief Trackbar callback - Canny thresholds input with a ratio 1:3 */voidCannyThreshold(int,void*){/// Reduce noise with a kernel 3x3blur(src_gray,detected_edges,Size(3,3));/// Canny detectorCanny(detected_edges,detected_edges,lowThreshold,lowThreshold*ratio,kernel_size);/// Using Canny's output as a mask, we display our resultdst=Scalar::all(0);src.copyTo(dst,detected_edges);imshow(window_name,dst);}/** @function main */intmain(intargc,char**argv){/// Load an imagesrc=imread(argv[1]);if(!src.data){return-1;}/// Create a matrix of the same type and size as src (for dst)dst.create(src.size(),src.type());/// Convert the image to grayscalecvtColor(src,src_gray,CV_BGR2GRAY);/// Create a windownamedWindow(window_name,CV_WINDOW_AUTOSIZE);/// Create a Trackbar for user to enter thresholdcreateTrackbar("Min Threshold:",window_name,&lowThreshold,max_lowThreshold,CannyThreshold);/// Show the imageCannyThreshold(0,0);/// Wait until user exit program by pressing a keywaitKey(0);return0;}

Explanation

  1. Create some needed variables:

      Mat src, src_gray;  Mat dst, detected_edges;  int edgeThresh = 1;  int lowThreshold;  int const max_lowThreshold = 100;  int ratio = 3;  int kernel_size = 3;  char* window_name = "Edge Map";Note the following:a. We establish a ratio of lower:upper threshold of 3:1 (with the variable *ratio*)b. We set the kernel size of :math:`3` (for the Sobel operations to be performed internally by the Canny function)c. We set a maximum value for the lower Threshold of :math:`100`.
  2. Loads the source image:

    /// Load an imagesrc=imread(argv[1]);if(!src.data){return-1;}
  3. Create a matrix of the same type and size ofsrc (to bedst)

    dst.create(src.size(),src.type());
  4. Convert the image to grayscale (using the functioncvtColor:

    cvtColor(src,src_gray,CV_BGR2GRAY);
  5. Create a window to display the results

    namedWindow(window_name,CV_WINDOW_AUTOSIZE);
  6. Create a Trackbar for the user to enter the lower threshold for our Canny detector:

    createTrackbar("Min Threshold:",window_name,&lowThreshold,max_lowThreshold,CannyThreshold);

    Observe the following:

    1. The variable to be controlled by the Trackbar islowThreshold with a limit ofmax_lowThreshold (which we set to 100 previously)
    2. Each time the Trackbar registers an action, the callback functionCannyThreshold will be invoked.
  7. Let’s check theCannyThreshold function, step by step:

    1. First, we blur the image with a filter of kernel size 3:

      blur(src_gray,detected_edges,Size(3,3));
    2. Second, we apply the OpenCV functionCanny:

      Canny(detected_edges,detected_edges,lowThreshold,lowThreshold*ratio,kernel_size);

      where the arguments are:

      • detected_edges: Source image, grayscale
      • detected_edges: Output of the detector (can be the same as the input)
      • lowThreshold: The value entered by the user moving the Trackbar
      • highThreshold: Set in the program as three times the lower threshold (following Canny’s recommendation)
      • kernel_size: We defined it to be 3 (the size of the Sobel kernel to be used internally)
  8. We fill adst image with zeros (meaning the image is completely black).

    dst=Scalar::all(0);
  9. Finally, we will use the functioncopyTo to map only the areas of the image that are identified as edges (on a black background).

    src.copyTo(dst,detected_edges);

    copyTo copy thesrc image ontodst. However, it will only copy the pixels in the locations where they have non-zero values. Since the output of the Canny detector is the edge contours on a black background, the resultingdst will be black in all the area but the detected edges.

  10. We display our result:

    imshow(window_name,dst);

Result

  • After compiling the code above, we can run it giving as argument the path to an image. For example, using as an input the following image:

    Original test image
  • Moving the slider, trying different threshold, we obtain the following result:

    Result after running Canny
  • Notice how the image is superposed to the black background on the edge regions.

Help and Feedback

You did not find what you were looking for?
  • Ask a question on theQ&A forum.
  • If you think something is missing or wrong in the documentation, please file abug report.

Logo

Table Of Contents

Previous topic

Laplace Operator

Next topic

Hough Line Transform

This Page

Navigation

© Copyright 2011-2014, opencv dev team. Last updated on Dec 31, 2019. Created usingSphinx 1.3.6.

[8]ページ先頭

©2009-2025 Movatter.jp