AUTHORS:
Martin Albrecht (2014-03): initial version
Jan Pöschko (2012-08): some code in this module was taken from Jan Pöschko’s2012 GSoC project
Bases:FreeModule_submodule_with_basis_pid
This class represents submodules of\(\ZZ^n\) with a distinguished basis.
However, most functionality in excess of standard submodules over PIDis for these submodules considered as discrete subgroups of\(\ZZ^n\), i.e.as lattices. That is, this class provides functions for computing LLLand BKZ reduced bases for this free module with respect to the standardEuclidean norm.
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice(sage.crypto.gen_lattice(type='modular',m=10,....:seed=1337,dual=True));LFree module of degree 10 and rank 10 over Integer RingUser basis matrix:[-1 1 2 -2 0 1 0 -1 2 1][ 1 0 0 -1 -2 1 -2 3 -1 0][ 1 2 0 2 -1 1 -2 2 2 0][ 1 0 -1 0 2 3 0 0 -1 -2][ 1 -3 0 0 2 1 -2 -1 0 0][-3 0 -1 0 -1 2 -2 0 0 2][ 0 0 0 1 0 2 -3 -3 -2 -1][ 0 -1 -4 -1 -1 1 2 -1 0 1][ 1 1 -2 1 1 2 1 1 -2 3][ 2 -1 1 2 -3 2 2 1 0 1]sage:L.shortest_vector()(-1, 1, 2, -2, 0, 1, 0, -1, 2, 1)
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice(sage.crypto.gen_lattice(type='modular',m=Integer(10),...seed=Integer(1337),dual=True));LFree module of degree 10 and rank 10 over Integer RingUser basis matrix:[-1 1 2 -2 0 1 0 -1 2 1][ 1 0 0 -1 -2 1 -2 3 -1 0][ 1 2 0 2 -1 1 -2 2 2 0][ 1 0 -1 0 2 3 0 0 -1 -2][ 1 -3 0 0 2 1 -2 -1 0 0][-3 0 -1 0 -1 2 -2 0 0 2][ 0 0 0 1 0 2 -3 -3 -2 -1][ 0 -1 -4 -1 -1 1 2 -1 0 1][ 1 1 -2 1 1 2 1 1 -2 3][ 2 -1 1 2 -3 2 2 1 0 1]>>>L.shortest_vector()(-1, 1, 2, -2, 0, 1, 0, -1, 2, 1)
Return a Block Korkine-Zolotareff reduced basis forself
.
INPUT:
*args
– passed through tosage.matrix.matrix_integer_dense.Matrix_integer_dense.BKZ()
*kwds
– passed through tosage.matrix.matrix_integer_dense.Matrix_integer_dense.BKZ()
OUTPUT: integer matrix which is a BKZ-reduced basis for this lattice
EXAMPLES:
sage:# needs sage.libs.linbox (o/w timeout)sage:fromsage.modules.free_module_integerimportIntegerLatticesage:A=sage.crypto.gen_lattice(type='random',n=1,m=60,q=2^60,seed=42)sage:L=IntegerLattice(A,lll_reduce=False)sage:min(v.norm().n()forvinL.reduced_basis)4.17330740711759e15sage:L.LLL()60 x 60 dense matrix over Integer Ring (use the '.str()' method to see the entries)sage:min(v.norm().n()forvinL.reduced_basis)5.19615242270663sage:L.BKZ(block_size=10)60 x 60 dense matrix over Integer Ring (use the '.str()' method to see the entries)sage:min(v.norm().n()forvinL.reduced_basis)4.12310562561766
>>>fromsage.allimport*>>># needs sage.libs.linbox (o/w timeout)>>>fromsage.modules.free_module_integerimportIntegerLattice>>>A=sage.crypto.gen_lattice(type='random',n=Integer(1),m=Integer(60),q=Integer(2)**Integer(60),seed=Integer(42))>>>L=IntegerLattice(A,lll_reduce=False)>>>min(v.norm().n()forvinL.reduced_basis)4.17330740711759e15>>>L.LLL()60 x 60 dense matrix over Integer Ring (use the '.str()' method to see the entries)>>>min(v.norm().n()forvinL.reduced_basis)5.19615242270663>>>L.BKZ(block_size=Integer(10))60 x 60 dense matrix over Integer Ring (use the '.str()' method to see the entries)>>>min(v.norm().n()forvinL.reduced_basis)4.12310562561766
Note
Ifblock_size==L.rank()
whereL
is this lattice, thenthis function performs Hermite-Korkine-Zolotareff (HKZ) reduction.
Hermite-Korkine-Zolotarev (HKZ) reduce the basis.
A basis\(B\) of a lattice\(L\), with orthogonalized basis\(B^*\) suchthat\(B = M \cdot B^*\) is HKZ reduced, if and only if, the followingproperties are satisfied:
The basis\(B\) is size-reduced, i.e., all off-diagonalcoefficients of\(M\) satisfy\(|\mu_{i,j}| \leq 1/2\)
The vector\(b_1\) realizes the first minimum\(\lambda_1(L)\).
The projection of the vectors\(b_2, \ldots,b_r\) orthogonally to\(b_1\) form an HKZ reduced basis.
Note
This is realized by callingsage.modules.free_module_integer.FreeModule_submodule_with_basis_integer.BKZ()
withblock_size==self.rank()
.
INPUT:
OUTPUT: integer matrix which is a HKZ-reduced basis for this lattice
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=sage.crypto.gen_lattice(type='random',n=1,m=40,q=2^60,seed=1337,lattice=True)sage:L.HKZ()40 x 40 dense matrix over Integer Ring (use the '.str()' method to see the entries)sage:L.reduced_basis[0](0, 0, -1, -1, 0, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, 1, 1, 1, -1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, 0, -2)
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=sage.crypto.gen_lattice(type='random',n=Integer(1),m=Integer(40),q=Integer(2)**Integer(60),seed=Integer(1337),lattice=True)>>>L.HKZ()40 x 40 dense matrix over Integer Ring (use the '.str()' method to see the entries)>>>L.reduced_basis[Integer(0)](0, 0, -1, -1, 0, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, 1, 1, 1, -1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, 0, -2)
Return an LLL reduced basis forself
.
A lattice basis\((b_1, b_2, ..., b_d)\) is\((\delta, \eta)\)-LLL-reducedif the two following conditions hold:
For any\(i > j\), we have\(\lvert \mu_{i, j} \rvert \leq \eta\).
For any\(i < d\), we have\(\delta \lvert b_i^* \rvert^2 \leq \lvert b_{i+1}^* +\mu_{i+1, i} b_i^* \rvert^2\),
where\(\mu_{i,j} = \langle b_i, b_j^* \rangle / \langle b_j^*,b_j^*\rangle\) and\(b_i^*\) is the\(i\)-th vector of the Gram-Schmidtorthogonalisation of\((b_1, b_2, \ldots, b_d)\).
The default reduction parameters are\(\delta = 0.99\) and\(\eta = 0.501\).
The parameters\(\delta\) and\(\eta\) must satisfy:\(0.25 < \delta \leq 1.0\) and\(0.5 \leq \eta < \sqrt{\delta}\).Polynomial time complexity is only guaranteed for\(\delta < 1\).Not every algorithm admits the case\(\delta = 1\).
INPUT:
*args
– passed through tosage.matrix.matrix_integer_dense.Matrix_integer_dense.LLL()
**kwds
– passed through tosage.matrix.matrix_integer_dense.Matrix_integer_dense.LLL()
OUTPUT: integer matrix which is an LLL-reduced basis for this lattice
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:A=random_matrix(ZZ,10,10,x=-2000,y=2000)sage:whileA.rank()<10:....:A=random_matrix(ZZ,10,10)sage:L=IntegerLattice(A,lll_reduce=False);LFree module of degree 10 and rank 10 over Integer RingUser basis matrix:...sage:L.reduced_basis==ATruesage:old=L.reduced_basis[0].norm().n()# needs sage.symbolicsage:_=L.LLL()sage:new=L.reduced_basis[0].norm().n()# needs sage.symbolicsage:new<=old# needs sage.symbolicTrue
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>A=random_matrix(ZZ,Integer(10),Integer(10),x=-Integer(2000),y=Integer(2000))>>>whileA.rank()<Integer(10):...A=random_matrix(ZZ,Integer(10),Integer(10))>>>L=IntegerLattice(A,lll_reduce=False);LFree module of degree 10 and rank 10 over Integer RingUser basis matrix:...>>>L.reduced_basis==ATrue>>>old=L.reduced_basis[Integer(0)].norm().n()# needs sage.symbolic>>>_=L.LLL()>>>new=L.reduced_basis[Integer(0)].norm().n()# needs sage.symbolic>>>new<=old# needs sage.symbolicTrue
Compute a vector\(w\) in this lattice which is close to the target vector\(t\).The ratio\(\frac{|t-w|}{|t-u|}\), where\(u\) is the closest lattice vector to\(t\),is exponential in the dimension of the lattice.
This will check whether the basis is already\(\delta\)-LLL-reducedand otherwise it will run LLL to make sure that it is. For moreinformation aboutdelta
seeLLL()
.
INPUT:
t
– the target vector to compute a close vector to
delta
– (default:0.99
) the LLL reduction parameter
algorithm
– string (default: ‘embedding’):
'embedding'
– embeds the lattice in a d+1 dimensional spaceand seeks short vectors using LLL. This calls LLL twice but isusually still quick.
'nearest_plane'
– uses the “NEAREST PLANE” algorithm from[Bab86]
'rounding_off'
– uses the “ROUNDING OFF” algorithm from[Bab86].This yields slightly worse results than the other algorithms but isat least faster than'nearest_plane'
.
*args
– passed through toLLL()
**kwds
– passed through toLLL()
OUTPUT: the vector\(w\) described above
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice([[1,0],[0,1]])sage:L.approximate_closest_vector((-6,5/3))(-6, 2)
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice([[Integer(1),Integer(0)],[Integer(0),Integer(1)]])>>>L.approximate_closest_vector((-Integer(6),Integer(5)/Integer(3)))(-6, 2)
The quality of the approximation depends ondelta
:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice([[101,0,0,0],[0,101,0,0],....:[0,0,101,0],[-28,39,45,1]],lll_reduce=False)sage:t=vector([1337]*4)sage:L.approximate_closest_vector(t,delta=0.26)(1331, 1324, 1349, 1334)sage:L.approximate_closest_vector(t,delta=0.99)(1326, 1349, 1339, 1345)sage:L.closest_vector(t)(1326, 1349, 1339, 1345)sage:# Checking that the other algorithms worksage:L.approximate_closest_vector(t,algorithm='nearest_plane')(1326, 1349, 1339, 1345)sage:L.approximate_closest_vector(t,algorithm='rounding_off')(1331, 1324, 1349, 1334)
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice([[Integer(101),Integer(0),Integer(0),Integer(0)],[Integer(0),Integer(101),Integer(0),Integer(0)],...[Integer(0),Integer(0),Integer(101),Integer(0)],[-Integer(28),Integer(39),Integer(45),Integer(1)]],lll_reduce=False)>>>t=vector([Integer(1337)]*Integer(4))>>>L.approximate_closest_vector(t,delta=RealNumber('0.26'))(1331, 1324, 1349, 1334)>>>L.approximate_closest_vector(t,delta=RealNumber('0.99'))(1326, 1349, 1339, 1345)>>>L.closest_vector(t)(1326, 1349, 1339, 1345)>>># Checking that the other algorithms work>>>L.approximate_closest_vector(t,algorithm='nearest_plane')(1326, 1349, 1339, 1345)>>>L.approximate_closest_vector(t,algorithm='rounding_off')(1331, 1324, 1349, 1334)
Alias forapproximate_closest_vector()
.
Compute the closest vector in the embedded lattice to a given vector.
INPUT:
t
– the target vector to compute the closest vector to
OUTPUT: the vector in the lattice closest tot
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice([[1,0],[0,1]])sage:L.closest_vector((-6,5/3))(-6, 2)
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice([[Integer(1),Integer(0)],[Integer(0),Integer(1)]])>>>L.closest_vector((-Integer(6),Integer(5)/Integer(3)))(-6, 2)
ALGORITHM:
Uses the algorithm from[MV2010].
Return\(|\det(G)|\), i.e. the absolute value of the determinant of theGram matrix\(B \cdot B^T\) for any basis\(B\).
OUTPUT: integer
EXAMPLES:
sage:L=sage.crypto.gen_lattice(m=10,seed=1337,lattice=True)sage:L.discriminant()214358881
>>>fromsage.allimport*>>>L=sage.crypto.gen_lattice(m=Integer(10),seed=Integer(1337),lattice=True)>>>L.discriminant()214358881
ReturnTrue
if this lattice is unimodular.
OUTPUT: boolean
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice([[1,0],[0,1]])sage:L.is_unimodular()Truesage:IntegerLattice([[2,0],[0,3]]).is_unimodular()False
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice([[Integer(1),Integer(0)],[Integer(0),Integer(1)]])>>>L.is_unimodular()True>>>IntegerLattice([[Integer(2),Integer(0)],[Integer(0),Integer(3)]]).is_unimodular()False
This attribute caches the currently best known reduced basis forself
, where “best” is defined by the Euclidean norm of thefirst row vector.
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:M=random_matrix(ZZ,10,10)sage:whileM.rank()<10:....:M=random_matrix(ZZ,10,10)sage:L=IntegerLattice(M,lll_reduce=False)sage:L.reduced_basis==MTruesage:LLL=L.LLL()sage:LLL==L.reduced_basisorbool(LLL[0].norm()>=M[0].norm())True
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>M=random_matrix(ZZ,Integer(10),Integer(10))>>>whileM.rank()<Integer(10):...M=random_matrix(ZZ,Integer(10),Integer(10))>>>L=IntegerLattice(M,lll_reduce=False)>>>L.reduced_basis==MTrue>>>LLL=L.LLL()>>>LLL==L.reduced_basisorbool(LLL[Integer(0)].norm()>=M[Integer(0)].norm())True
Return a shortest vector.
INPUT:
update_reduced_basis
– boolean (default:True
); set thisflag if the found vector should be used to improve the basis
algorithm
– (default:'fplll'
) either'fplll'
or'pari'
*args
– passed through to underlying implementation
**kwds
– passed through to underlying implementation
OUTPUT: a shortest nonzero vector for this lattice
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:A=sage.crypto.gen_lattice(type='random',n=1,m=30,q=2^40,seed=42)sage:L=IntegerLattice(A,lll_reduce=False)sage:min(v.norm().n()forvinL.reduced_basis)# needs sage.symbolic6.03890756700000e10sage:L.shortest_vector().norm().n()# needs sage.symbolic3.74165738677394sage:L=IntegerLattice(A,lll_reduce=False)sage:min(v.norm().n()forvinL.reduced_basis)# needs sage.symbolic6.03890756700000e10sage:L.shortest_vector(algorithm='pari').norm().n()# needs sage.symbolic3.74165738677394sage:L=IntegerLattice(A,lll_reduce=True)sage:L.shortest_vector(algorithm='pari').norm().n()# needs sage.symbolic3.74165738677394
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>A=sage.crypto.gen_lattice(type='random',n=Integer(1),m=Integer(30),q=Integer(2)**Integer(40),seed=Integer(42))>>>L=IntegerLattice(A,lll_reduce=False)>>>min(v.norm().n()forvinL.reduced_basis)# needs sage.symbolic6.03890756700000e10>>>L.shortest_vector().norm().n()# needs sage.symbolic3.74165738677394>>>L=IntegerLattice(A,lll_reduce=False)>>>min(v.norm().n()forvinL.reduced_basis)# needs sage.symbolic6.03890756700000e10>>>L.shortest_vector(algorithm='pari').norm().n()# needs sage.symbolic3.74165738677394>>>L=IntegerLattice(A,lll_reduce=True)>>>L.shortest_vector(algorithm='pari').norm().n()# needs sage.symbolic3.74165738677394
Inject the vectorw
and run LLL to update the basis.
INPUT:
w
– a vector
OUTPUT: nothing is returned but the internal state is modified
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:A=sage.crypto.gen_lattice(type='random',n=1,m=30,q=2^40,seed=42)sage:L=IntegerLattice(A)sage:B=L.reduced_basissage:v=L.shortest_vector(update_reduced_basis=False)sage:L.update_reduced_basis(v)sage:bool(L.reduced_basis[0].norm()<B[0].norm())True
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>A=sage.crypto.gen_lattice(type='random',n=Integer(1),m=Integer(30),q=Integer(2)**Integer(40),seed=Integer(42))>>>L=IntegerLattice(A)>>>B=L.reduced_basis>>>v=L.shortest_vector(update_reduced_basis=False)>>>L.update_reduced_basis(v)>>>bool(L.reduced_basis[Integer(0)].norm()<B[Integer(0)].norm())True
Return\(vol(L)\) which is\(\sqrt{\det(B \cdot B^T)}\) for any basis\(B\).
OUTPUT: integer
EXAMPLES:
sage:L=sage.crypto.gen_lattice(m=10,seed=1337,lattice=True)sage:L.volume()14641
>>>fromsage.allimport*>>>L=sage.crypto.gen_lattice(m=Integer(10),seed=Integer(1337),lattice=True)>>>L.volume()14641
Compute the Voronoi cell of a lattice, returning a Polyhedron.
INPUT:
radius
– (default: automatic determination) radius of ballcontaining considered vertices
OUTPUT: the Voronoi cell as a Polyhedron instance
The result is cached so that subsequent calls to this functionreturn instantly.
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice([[1,0],[0,1]])sage:V=L.voronoi_cell()sage:V.Vrepresentation()(A vertex at (1/2, -1/2), A vertex at (1/2, 1/2), A vertex at (-1/2, 1/2), A vertex at (-1/2, -1/2))
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice([[Integer(1),Integer(0)],[Integer(0),Integer(1)]])>>>V=L.voronoi_cell()>>>V.Vrepresentation()(A vertex at (1/2, -1/2), A vertex at (1/2, 1/2), A vertex at (-1/2, 1/2), A vertex at (-1/2, -1/2))
The volume of the Voronoi cell is the square root of thediscriminant of the lattice:
sage:L=IntegerLattice(Matrix(ZZ,4,4,[[0,0,1,-1],[1,-1,2,1],....:[-6,0,3,3,],[-6,-24,-6,-5]]));LFree module of degree 4 and rank 4 over Integer RingUser basis matrix:[ 0 0 1 -1][ 1 -1 2 1][ -6 0 3 3][ -6 -24 -6 -5]sage:V=L.voronoi_cell()# long timesage:V.volume()# long time678sage:sqrt(L.discriminant())678
>>>fromsage.allimport*>>>L=IntegerLattice(Matrix(ZZ,Integer(4),Integer(4),[[Integer(0),Integer(0),Integer(1),-Integer(1)],[Integer(1),-Integer(1),Integer(2),Integer(1)],...[-Integer(6),Integer(0),Integer(3),Integer(3),],[-Integer(6),-Integer(24),-Integer(6),-Integer(5)]]));LFree module of degree 4 and rank 4 over Integer RingUser basis matrix:[ 0 0 1 -1][ 1 -1 2 1][ -6 0 3 3][ -6 -24 -6 -5]>>>V=L.voronoi_cell()# long time>>>V.volume()# long time678>>>sqrt(L.discriminant())678
Lattices not having full dimension are handled as well:
sage:L=IntegerLattice([[2,0,0],[0,2,0]])sage:V=L.voronoi_cell()sage:V.Hrepresentation()(An inequality (-1, 0, 0) x + 1 >= 0, An inequality (0, -1, 0) x + 1 >= 0, An inequality (1, 0, 0) x + 1 >= 0, An inequality (0, 1, 0) x + 1 >= 0)
>>>fromsage.allimport*>>>L=IntegerLattice([[Integer(2),Integer(0),Integer(0)],[Integer(0),Integer(2),Integer(0)]])>>>V=L.voronoi_cell()>>>V.Hrepresentation()(An inequality (-1, 0, 0) x + 1 >= 0, An inequality (0, -1, 0) x + 1 >= 0, An inequality (1, 0, 0) x + 1 >= 0, An inequality (0, 1, 0) x + 1 >= 0)
ALGORITHM:
Uses parts of the algorithm from[VB1996].
Compute the embedded vectors inducing the Voronoi cell.
OUTPUT: the list of Voronoi relevant vectors
EXAMPLES:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:L=IntegerLattice([[3,0],[4,0]])sage:L.voronoi_relevant_vectors()[(-1, 0), (1, 0)]
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>L=IntegerLattice([[Integer(3),Integer(0)],[Integer(4),Integer(0)]])>>>L.voronoi_relevant_vectors()[(-1, 0), (1, 0)]
Construct a new integer lattice frombasis
.
INPUT:
basis
– can be one of the following:
a list of vectors
a matrix over the integers
an element of an absolute order
lll_reduce
– boolean (default:True
); run LLL reduction on the basison construction
EXAMPLES:
We construct a lattice from a list of rows:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:IntegerLattice([[1,0,3],[0,2,1],[0,2,7]])Free module of degree 3 and rank 3 over Integer RingUser basis matrix:[-2 0 0][ 0 2 1][ 1 -2 2]
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>IntegerLattice([[Integer(1),Integer(0),Integer(3)],[Integer(0),Integer(2),Integer(1)],[Integer(0),Integer(2),Integer(7)]])Free module of degree 3 and rank 3 over Integer RingUser basis matrix:[-2 0 0][ 0 2 1][ 1 -2 2]
Sage includes a generator for hard lattices from cryptography:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:A=sage.crypto.gen_lattice(type='modular',m=10,seed=1337,dual=True)sage:IntegerLattice(A)Free module of degree 10 and rank 10 over Integer RingUser basis matrix:[-1 1 2 -2 0 1 0 -1 2 1][ 1 0 0 -1 -2 1 -2 3 -1 0][ 1 2 0 2 -1 1 -2 2 2 0][ 1 0 -1 0 2 3 0 0 -1 -2][ 1 -3 0 0 2 1 -2 -1 0 0][-3 0 -1 0 -1 2 -2 0 0 2][ 0 0 0 1 0 2 -3 -3 -2 -1][ 0 -1 -4 -1 -1 1 2 -1 0 1][ 1 1 -2 1 1 2 1 1 -2 3][ 2 -1 1 2 -3 2 2 1 0 1]
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>A=sage.crypto.gen_lattice(type='modular',m=Integer(10),seed=Integer(1337),dual=True)>>>IntegerLattice(A)Free module of degree 10 and rank 10 over Integer RingUser basis matrix:[-1 1 2 -2 0 1 0 -1 2 1][ 1 0 0 -1 -2 1 -2 3 -1 0][ 1 2 0 2 -1 1 -2 2 2 0][ 1 0 -1 0 2 3 0 0 -1 -2][ 1 -3 0 0 2 1 -2 -1 0 0][-3 0 -1 0 -1 2 -2 0 0 2][ 0 0 0 1 0 2 -3 -3 -2 -1][ 0 -1 -4 -1 -1 1 2 -1 0 1][ 1 1 -2 1 1 2 1 1 -2 3][ 2 -1 1 2 -3 2 2 1 0 1]
You can also construct the lattice directly:
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:sage.crypto.gen_lattice(type='modular',m=10,seed=1337,dual=True,lattice=True)Free module of degree 10 and rank 10 over Integer RingUser basis matrix:[-1 1 2 -2 0 1 0 -1 2 1][ 1 0 0 -1 -2 1 -2 3 -1 0][ 1 2 0 2 -1 1 -2 2 2 0][ 1 0 -1 0 2 3 0 0 -1 -2][ 1 -3 0 0 2 1 -2 -1 0 0][-3 0 -1 0 -1 2 -2 0 0 2][ 0 0 0 1 0 2 -3 -3 -2 -1][ 0 -1 -4 -1 -1 1 2 -1 0 1][ 1 1 -2 1 1 2 1 1 -2 3][ 2 -1 1 2 -3 2 2 1 0 1]
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>sage.crypto.gen_lattice(type='modular',m=Integer(10),seed=Integer(1337),dual=True,lattice=True)Free module of degree 10 and rank 10 over Integer RingUser basis matrix:[-1 1 2 -2 0 1 0 -1 2 1][ 1 0 0 -1 -2 1 -2 3 -1 0][ 1 2 0 2 -1 1 -2 2 2 0][ 1 0 -1 0 2 3 0 0 -1 -2][ 1 -3 0 0 2 1 -2 -1 0 0][-3 0 -1 0 -1 2 -2 0 0 2][ 0 0 0 1 0 2 -3 -3 -2 -1][ 0 -1 -4 -1 -1 1 2 -1 0 1][ 1 1 -2 1 1 2 1 1 -2 3][ 2 -1 1 2 -3 2 2 1 0 1]
We construct an ideal lattice from an element of an absolute order:
sage:# needs sage.rings.number_fieldsage:K.<a>=CyclotomicField(17)sage:O=K.ring_of_integers()sage:f=O(-a^15+a^13+4*a^12-12*a^11-256*a^10+a^9-a^7....:-4*a^6+a^5+210*a^4+2*a^3-2*a^2+2*a-2)sage:fromsage.modules.free_module_integerimportIntegerLatticesage:IntegerLattice(f)Free module of degree 16 and rank 16 over Integer RingUser basis matrix:[ -2 2 -2 2 210 1 -4 -1 0 1 -256 -12 4 1 0 -1][ 33 48 44 48 256 -209 28 51 45 49 -1 35 44 48 44 48][ 1 -1 3 -1 3 211 2 -3 0 1 2 -255 -11 5 2 1][-223 34 50 47 258 0 29 45 46 47 2 -11 33 48 44 48][ -13 31 46 42 46 -2 -225 32 48 45 256 -2 27 43 44 45][ -16 33 42 46 254 1 -19 32 44 45 0 -13 -225 32 48 45][ -15 -223 30 50 255 1 -20 32 42 47 -2 -11 -15 33 44 44][ -11 -11 33 48 256 3 -17 -222 32 53 1 -9 -14 35 44 48][ -12 -13 32 45 257 0 -16 -13 32 48 -1 -10 -14 -222 31 51][ -9 -13 -221 32 52 1 -11 -12 33 46 258 1 -15 -12 33 49][ -5 -2 -1 0 -257 -13 3 0 -1 -2 -1 -3 1 -3 1 209][ -15 -11 -15 33 256 -1 -17 -14 -225 33 4 -12 -13 -14 31 44][ 11 11 11 11 -245 -3 17 10 13 220 12 5 12 9 14 -35][ -18 -15 -20 29 250 -3 -23 -16 -19 30 -4 -17 -17 -17 -229 28][ -15 -11 -15 -223 242 5 -18 -12 -16 34 -2 -11 -15 -11 -15 33][ 378 120 92 147 152 462 136 96 99 144 -52 412 133 91 -107 138]
>>>fromsage.allimport*>>># needs sage.rings.number_field>>>K=CyclotomicField(Integer(17),names=('a',));(a,)=K._first_ngens(1)>>>O=K.ring_of_integers()>>>f=O(-a**Integer(15)+a**Integer(13)+Integer(4)*a**Integer(12)-Integer(12)*a**Integer(11)-Integer(256)*a**Integer(10)+a**Integer(9)-a**Integer(7)...-Integer(4)*a**Integer(6)+a**Integer(5)+Integer(210)*a**Integer(4)+Integer(2)*a**Integer(3)-Integer(2)*a**Integer(2)+Integer(2)*a-Integer(2))>>>fromsage.modules.free_module_integerimportIntegerLattice>>>IntegerLattice(f)Free module of degree 16 and rank 16 over Integer RingUser basis matrix:[ -2 2 -2 2 210 1 -4 -1 0 1 -256 -12 4 1 0 -1][ 33 48 44 48 256 -209 28 51 45 49 -1 35 44 48 44 48][ 1 -1 3 -1 3 211 2 -3 0 1 2 -255 -11 5 2 1][-223 34 50 47 258 0 29 45 46 47 2 -11 33 48 44 48][ -13 31 46 42 46 -2 -225 32 48 45 256 -2 27 43 44 45][ -16 33 42 46 254 1 -19 32 44 45 0 -13 -225 32 48 45][ -15 -223 30 50 255 1 -20 32 42 47 -2 -11 -15 33 44 44][ -11 -11 33 48 256 3 -17 -222 32 53 1 -9 -14 35 44 48][ -12 -13 32 45 257 0 -16 -13 32 48 -1 -10 -14 -222 31 51][ -9 -13 -221 32 52 1 -11 -12 33 46 258 1 -15 -12 33 49][ -5 -2 -1 0 -257 -13 3 0 -1 -2 -1 -3 1 -3 1 209][ -15 -11 -15 33 256 -1 -17 -14 -225 33 4 -12 -13 -14 31 44][ 11 11 11 11 -245 -3 17 10 13 220 12 5 12 9 14 -35][ -18 -15 -20 29 250 -3 -23 -16 -19 30 -4 -17 -17 -17 -229 28][ -15 -11 -15 -223 242 5 -18 -12 -16 34 -2 -11 -15 -11 -15 33][ 378 120 92 147 152 462 136 96 99 144 -52 412 133 91 -107 138]
We construct\(\ZZ^n\):
sage:fromsage.modules.free_module_integerimportIntegerLatticesage:IntegerLattice(ZZ^10)Free module of degree 10 and rank 10 over Integer RingUser basis matrix:[1 0 0 0 0 0 0 0 0 0][0 1 0 0 0 0 0 0 0 0][0 0 1 0 0 0 0 0 0 0][0 0 0 1 0 0 0 0 0 0][0 0 0 0 1 0 0 0 0 0][0 0 0 0 0 1 0 0 0 0][0 0 0 0 0 0 1 0 0 0][0 0 0 0 0 0 0 1 0 0][0 0 0 0 0 0 0 0 1 0][0 0 0 0 0 0 0 0 0 1]
>>>fromsage.allimport*>>>fromsage.modules.free_module_integerimportIntegerLattice>>>IntegerLattice(ZZ**Integer(10))Free module of degree 10 and rank 10 over Integer RingUser basis matrix:[1 0 0 0 0 0 0 0 0 0][0 1 0 0 0 0 0 0 0 0][0 0 1 0 0 0 0 0 0 0][0 0 0 1 0 0 0 0 0 0][0 0 0 0 1 0 0 0 0 0][0 0 0 0 0 1 0 0 0 0][0 0 0 0 0 0 1 0 0 0][0 0 0 0 0 0 0 1 0 0][0 0 0 0 0 0 0 0 1 0][0 0 0 0 0 0 0 0 0 1]
Sage also interfaces with fpylll’s lattice generator:
sage:# needs fpylllsage:fromsage.modules.free_module_integerimportIntegerLatticesage:fromfpylllimportIntegerMatrixsage:A=IntegerMatrix.random(8,"simdioph",bits=20,bits2=10)sage:A=A.to_matrix(matrix(ZZ,8,8))sage:IntegerLattice(A,lll_reduce=False)Free module of degree 8 and rank 8 over Integer RingUser basis matrix:[ 1024 829556 161099 11567 521155 769480 639201 689979][ 0 1048576 0 0 0 0 0 0][ 0 0 1048576 0 0 0 0 0][ 0 0 0 1048576 0 0 0 0][ 0 0 0 0 1048576 0 0 0][ 0 0 0 0 0 1048576 0 0][ 0 0 0 0 0 0 1048576 0][ 0 0 0 0 0 0 0 1048576]
>>>fromsage.allimport*>>># needs fpylll>>>fromsage.modules.free_module_integerimportIntegerLattice>>>fromfpylllimportIntegerMatrix>>>A=IntegerMatrix.random(Integer(8),"simdioph",bits=Integer(20),bits2=Integer(10))>>>A=A.to_matrix(matrix(ZZ,Integer(8),Integer(8)))>>>IntegerLattice(A,lll_reduce=False)Free module of degree 8 and rank 8 over Integer RingUser basis matrix:[ 1024 829556 161099 11567 521155 769480 639201 689979][ 0 1048576 0 0 0 0 0 0][ 0 0 1048576 0 0 0 0 0][ 0 0 0 1048576 0 0 0 0][ 0 0 0 0 1048576 0 0 0][ 0 0 0 0 0 1048576 0 0][ 0 0 0 0 0 0 1048576 0][ 0 0 0 0 0 0 0 1048576]