
We bake cookies in your browser for a better experience. Using this site means that you consent.Read More
TheQSystemSemaphore class provides a general counting system semaphore.More...
| Header: | #include <QSystemSemaphore> |
| Since: | Qt 4.4 |
| enum | AccessMode { Open, Create } |
| enum | SystemSemaphoreError { NoError, PermissionDenied, KeyError, AlreadyExists, ..., UnknownError } |
| QSystemSemaphore(const QString & key, int initialValue = 0, AccessMode mode = Open) | |
| ~QSystemSemaphore() | |
| bool | acquire() |
| SystemSemaphoreError | error() const |
| QString | errorString() const |
| QString | key() const |
| bool | release(int n = 1) |
| void | setKey(const QString & key, int initialValue = 0, AccessMode mode = Open) |
TheQSystemSemaphore class provides a general counting system semaphore.
A semaphore is a generalization of a mutex. While a mutex can be locked only once, a semaphore can be acquired multiple times. Typically, a semaphore is used to protect a certain number of identical resources.
Like its lighter counterpartQSemaphore, aQSystemSemaphore can be accessed from multiplethreads. UnlikeQSemaphore, aQSystemSemaphore can also be accessed from multipleprocesses. This meansQSystemSemaphore is a much heavier class, so if your application doesn't need to access your semaphores across multiple processes, you will probably want to useQSemaphore.
Semaphores support two fundamental operations,acquire() andrelease():
acquire() tries to acquire one resource. If there isn't a resource available, the call blocks until a resource becomes available. Then the resource is acquired and the call returns.
release() releases one resource so it can be acquired by another process. The function can also be called with a parameter n > 1, which releases n resources.
A system semaphore is created with a string key that other processes can use to use the same semaphore.
Example: Create a system semaphore
QSystemSemaphore sem("market",3,QSystemSemaphore::Create);// resources available == 3sem.acquire();// resources available == 2sem.acquire();// resources available == 1sem.acquire();// resources available == 0sem.release();// resources available == 1sem.release(2);// resources available == 3
A typical application of system semaphores is for controlling access to a circular buffer shared by a producer process and a consumer processes.
When using this class, be aware of the following platform differences:
Windows:QSystemSemaphore does not own its underlying system semaphore. Windows owns it. This means that when all instances ofQSystemSemaphore for a particular key have been destroyed, either by having their destructors called, or because one or more processes crash, Windows removes the underlying system semaphore.
Unix:
See alsoQSharedMemory andQSemaphore.
This enum is used by the constructor andsetKey(). Its purpose is to enable handling the problem in Unix implementations of semaphores that survive a crash. In Unix, when a semaphore survives a crash, we need a way to force it to reset its resource count, when the system reuses the semaphore. In Windows and in Symbian, where semaphores can't survive a crash, this enum has no effect.
| Constant | Value | Description |
|---|---|---|
QSystemSemaphore::Open | 0 | If the semaphore already exists, its initial resource count is not reset. If the semaphore does not already exist, it is created and its initial resource count set. |
QSystemSemaphore::Create | 1 | QSystemSemaphore takes ownership of the semaphore and sets its resource count to the requested value, regardless of whether the semaphore already exists by having survived a crash. This value should be passed to the constructor, when the first semaphore for a particular key is constructed and you know that if the semaphore already exists it could only be because of a crash. In Windows and in Symbian, where a semaphore can't survive a crash, Create and Open have the same behavior. |
| Constant | Value | Description |
|---|---|---|
QSystemSemaphore::NoError | 0 | No error occurred. |
QSystemSemaphore::PermissionDenied | 1 | The operation failed because the caller didn't have the required permissions. |
QSystemSemaphore::KeyError | 2 | The operation failed because of an invalid key. |
QSystemSemaphore::AlreadyExists | 3 | The operation failed because a system semaphore with the specified key already existed. |
QSystemSemaphore::NotFound | 4 | The operation failed because a system semaphore with the specified key could not be found. |
QSystemSemaphore::OutOfResources | 5 | The operation failed because there was not enough memory available to fill the request. |
QSystemSemaphore::UnknownError | 6 | Something else happened and it was bad. |
Requests a system semaphore for the specifiedkey. The parametersinitialValue andmode are used according to the following rules, which are system dependent.
In Unix, if themode isOpen and the system already has a semaphore identified bykey, that semaphore is used, and the semaphore's resource count is not changed, i.e.,initialValue is ignored. But if the system does not already have a semaphore identified bykey, it creates a new semaphore for that key and sets its resource count toinitialValue.
In Unix, if themode isCreate and the system already has a semaphore identified bykey, that semaphore is used, and its resource count is set toinitialValue. If the system does not already have a semaphore identified bykey, it creates a new semaphore for that key and sets its resource count toinitialValue.
In QNX, if themode isCreate and the system already has a semaphore identified bykey, that semaphore will be deleted and the new one will be created for that key with a resource count set toinitialValue.
In Windows and in Symbian,mode is ignored, and the system always tries to create a semaphore for the specifiedkey. If the system does not already have a semaphore identified askey, it creates the semaphore and sets its resource count toinitialValue. But if the system already has a semaphore identified askey it uses that semaphore and ignoresinitialValue.
Themode parameter is only used in Unix systems to handle the case where a semaphore survives a process crash. In that case, the next process to allocate a semaphore with the samekey will get the semaphore that survived the crash, and unlessmode isCreate, the resource count will not be reset toinitialValue but will retain the initial value it had been given by the crashed process.
The destructor destroys theQSystemSemaphore object, but the underlying system semaphore is not removed from the system unless this instance ofQSystemSemaphore is the last one existing for that system semaphore.
Two important side effects of the destructor depend on the system. In Windows, ifacquire() has been called for this semaphore but notrelease(),release() will not be called by the destructor, nor will the resource be released when the process exits normally. This would be a program bug which could be the cause of a deadlock in another process trying to acquire the same resource. In Unix, acquired resources that are not released before the destructor is called are automatically released when the process exits.
Acquires one of the resources guarded by this semaphore, if there is one available, and returns true. If all the resources guarded by this semaphore have already been acquired, the call blocks until one of them is released by another process or thread having a semaphore with the same key.
If false is returned, a system error has occurred. Callerror() to get a value ofQSystemSemaphore::SystemSemaphoreError that indicates which error occurred.
See alsorelease().
Returns a value indicating whether an error occurred, and, if so, which error it was.
See alsoerrorString().
Returns a text description of the last error that occurred. Iferror() returns anerror value, call this function to get a text string that describes the error.
See alsoerror().
Returns the key assigned to this system semaphore. The key is the name by which the semaphore can be accessed from other processes.
See alsosetKey().
Releasesn resources guarded by the semaphore. Returns true unless there is a system error.
Example: Create a system semaphore having five resources; acquire them all and then release them all.
QSystemSemaphore sem("market",5,QSystemSemaphore::Create);sem.acquire(5);// acquire all 5 resourcessem.release(5);// release the 5 resources
This function can also "create" resources. For example, immediately following the sequence of statements above, suppose we add the statement:
sem.release(10);// "create" 10 new resources
Ten new resources are now guarded by the semaphore, in addition to the five that already existed. You would not normally use this function to create more resources.
See alsoacquire().
This function works the same as the constructor. It reconstructs thisQSystemSemaphore object. If the newkey is different from the old key, calling this function is like calling the destructor of the semaphore with the old key, then calling the constructor to create a new semaphore with the newkey. TheinitialValue andmode parameters are as defined for the constructor.
See alsoQSystemSemaphore() andkey().
© 2016 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of theGNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.