Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      std::erfc,std::erfcf,std::erfcl

      From cppreference.com
      <cpp‎ |numeric‎ |math
       
       
       
      Common mathematical functions
      Nearest integer floating point operations
      (C++11)(C++11)(C++11)
      (C++11)
      (C++11)
      (C++11)(C++11)(C++11)
      Floating point manipulation functions
      (C++11)(C++11)
      (C++11)
      (C++11)
      Classification and comparison
      (C++11)
      (C++11)
      (C++11)
      (C++11)
      (C++11)
      (C++11)
      Types
      (C++11)
      (C++11)
      (C++11)
      Macro constants
       
      Defined in header<cmath>
      (1)
      float       erfc(float num);

      double      erfc(double num);

      longdouble erfc(longdouble num);
      (until C++23)
      /*floating-point-type*/
                  erfc(/*floating-point-type*/ num);
      (since C++23)
      (constexpr since C++26)
      float       erfcf(float num);
      (2)(since C++11)
      (constexpr since C++26)
      longdouble erfcl(longdouble num);
      (3)(since C++11)
      (constexpr since C++26)
      SIMD overload(since C++26)
      Defined in header<simd>
      template</*math-floating-point*/ V>

      constexpr/*deduced-simd-t*/<V>

                  erfc(const V& v_num);
      (S)(since C++26)
      Defined in header<cmath>
      template<class Integer>
      double      erfc( Integer num);
      (A)(constexpr since C++26)
      1-3) Computes thecomplementary error function ofnum, that is1.0-std::erf(num), but without loss of precision for largenum. The library provides overloads ofstd::erfc for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
      S) The SIMD overload performs an element-wisestd::erfc onv_num.
      (Seemath-floating-point anddeduced-simd-t for their definitions.)
      (since C++26)
      A) Additional overloads are provided for all integer types, which are treated asdouble.
      (since C++11)

      Contents

      [edit]Parameters

      num - floating-point or integer value

      [edit]Return value

      If no errors occur, value of the complementary error function ofnum, that is\(\frac{2}{\sqrt{\pi} }\int_{num}^{\infty}{e^{-{t^2} }\mathsf{d}t}\)
      2
      π

      num
      e-t2
      dt
      or\({\small 1-\operatorname{erf}(num)}\)1-erf(num), is returned.

      If a range error occurs due to underflow, the correct result (after rounding) is returned.

      [edit]Error handling

      Errors are reported as specified inmath_errhandling.

      If the implementation supports IEEE floating-point arithmetic (IEC 60559),

      • If the argument is +∞, +0 is returned.
      • If the argument is -∞, 2 is returned.
      • If the argument is NaN, NaN is returned.

      [edit]Notes

      For the IEEE-compatible typedouble, underflow is guaranteed ifnum>26.55.

      The additional overloads are not required to be provided exactly as(A). They only need to be sufficient to ensure that for their argumentnum of integer type,std::erfc(num) has the same effect asstd::erfc(static_cast<double>(num)).

      [edit]Example

      Run this code
      #include <cmath>#include <iomanip>#include <iostream> double normalCDF(double x)// Phi(-∞, x) aka N(x){return std::erfc(-x/std::sqrt(2))/2;} int main(){std::cout<<"normal cumulative distribution function:\n"<<std::fixed<<std::setprecision(2);for(double n=0; n<1; n+=0.1)std::cout<<"normalCDF("<< n<<") = "<<100* normalCDF(n)<<"%\n"; std::cout<<"special values:\n"<<"erfc(-Inf) = "<< std::erfc(-INFINITY)<<'\n'<<"erfc(Inf) = "<< std::erfc(INFINITY)<<'\n';}

      Output:

      normal cumulative distribution function:normalCDF(0.00) = 50.00%normalCDF(0.10) = 53.98%normalCDF(0.20) = 57.93%normalCDF(0.30) = 61.79%normalCDF(0.40) = 65.54%normalCDF(0.50) = 69.15%normalCDF(0.60) = 72.57%normalCDF(0.70) = 75.80%normalCDF(0.80) = 78.81%normalCDF(0.90) = 81.59%normalCDF(1.00) = 84.13%special values:erfc(-Inf) = 2.00erfc(Inf) = 0.00

      [edit]See also

      (C++11)(C++11)(C++11)
      error function
      (function)[edit]

      [edit]External links

      Weisstein, Eric W. "Erfc." From MathWorld — A Wolfram Web Resource.
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/numeric/math/erfc&oldid=160764"

      [8]ページ先頭

      ©2009-2025 Movatter.jp