Movatterモバイル変換


[0]ホーム

URL:


About:Standard probability space

An Entity of Type:Thing,from Named Graph:http://dbpedia.org,within Data Space:dbpedia.org

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

PropertyValue
dbo:abstract
  • Un espace probabilisé standard également appelé espace de probabilité de Lebesgue-Rokhlin ou plus simplement espace de Lebesgue est un espace probabilisé satisfaisant certaines hypothèses introduites par Vladimir Rokhlin en 1940. Informellement, il s'agit d'un espace probabiliste composé d'un intervalle et/ou d'un nombre fini ou dénombrable d'atomes. * Portail des probabilités et de la statistique (fr)
  • In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms. The theory of standard probability spaces was started by von Neumann in 1932 and shaped by Vladimir Rokhlin in 1940. Rokhlin showed that the unit interval endowed with the Lebesgue measure has important advantages over general probability spaces, yet can be effectively substituted for many of these in probability theory. The dimension of the unit interval is not an obstacle, as was clear already to Norbert Wiener. He constructed the Wiener process (also called Brownian motion) in the form of a measurable map from the unit interval to the space of continuous functions. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 10406190 (xsd:integer)
dbo:wikiPageLength
  • 29008 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1122963358 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • Standard_probability_space (en)
dbp:last
  • * (en)
dbp:title
  • Standard probability space (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Un espace probabilisé standard également appelé espace de probabilité de Lebesgue-Rokhlin ou plus simplement espace de Lebesgue est un espace probabilisé satisfaisant certaines hypothèses introduites par Vladimir Rokhlin en 1940. Informellement, il s'agit d'un espace probabiliste composé d'un intervalle et/ou d'un nombre fini ou dénombrable d'atomes. * Portail des probabilités et de la statistique (fr)
  • In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms. (en)
rdfs:label
  • Espace probabilisé standard (fr)
  • Standard probability space (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
isdbo:wikiPageRedirects of
isdbo:wikiPageWikiLink of
isfoaf:primaryTopic of
Powered by OpenLink Virtuoso   This material is Open Knowledge    W3C Semantic Web Technology    This material is Open Knowledge   Valid XHTML + RDFa
This content was extracted fromWikipedia and is licensed under theCreative Commons Attribution-ShareAlike 3.0 Unported License

[8]ページ先頭

©2009-2025 Movatter.jp