Movatterモバイル変換


[0]ホーム

URL:


About:Physical and logical qubits

An Entity of Type:Thing,from Named Graph:http://dbpedia.org,within Data Space:dbpedia.org

In quantum computing, a qubit is a unit of information analogous to a bit (binary digit) in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

PropertyValue
dbo:abstract
  • In quantum computing, a qubit is a unit of information analogous to a bit (binary digit) in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. A physical qubit is a physical device that behaves as a two-state quantum system, used as a component of a computer system. A logical qubit is a physical or abstract qubit that performs as specified in a quantum algorithm or quantum circuit subject to unitary transformations, has a long enough coherence time to be usable by quantum logic gates (c.f. propagation delay for classical logic gates). As of September 2018, most technologies used to implement qubits face issues of stability, decoherence, fault tolerance and scalability. Because of this, many physical qubits are needed for the purposes of error-correction to produce an entity which behaves logically as a single qubit would in a quantum circuit or algorithm; this is the subject of quantum error correction. Thus, contemporary logical qubits typically consist of many physical qubits to provide stability, error-correction and fault tolerance needed to perform useful computations. (en)
dbo:wikiPageID
  • 58513641 (xsd:integer)
dbo:wikiPageLength
  • 11572 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1105707502 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • November 2018 (en)
dbp:details
  • No need for multiple citations per claim (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In quantum computing, a qubit is a unit of information analogous to a bit (binary digit) in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. (en)
rdfs:label
  • Physical and logical qubits (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
isdbo:wikiPageRedirects of
isdbo:wikiPageWikiLink of
isfoaf:primaryTopic of
Powered by OpenLink Virtuoso   This material is Open Knowledge    W3C Semantic Web Technology    This material is Open Knowledge   Valid XHTML + RDFa
This content was extracted fromWikipedia and is licensed under theCreative Commons Attribution-ShareAlike 3.0 Unported License

[8]ページ先頭

©2009-2025 Movatter.jp